RESUMEN
BACKGROUND: Myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) is a common, long-term condition characterised by post-exertional malaise, often with fatigue that is not significantly relieved by rest. ME/CFS has no confirmed diagnostic test or effective treatment and we lack knowledge of its causes. Identification of genes and cellular processes whose disruption adds to ME/CFS risk is a necessary first step towards development of effective therapy. METHODS: Here we describe DecodeME, an ongoing study co-produced by people with lived experience of ME/CFS and scientists. Together we designed the study and obtained funding and are now recruiting up to 25,000 people in the UK with a clinical diagnosis of ME/CFS. Those eligible for the study are at least 16 years old, pass international study criteria, and lack any alternative diagnoses that can result in chronic fatigue. These will include 5,000 people whose ME/CFS diagnosis was a consequence of SARS-CoV-2 infection. Questionnaires are completed online or on paper. Participants' saliva DNA samples are acquired by post, which improves participation by more severely-affected individuals. Digital marketing and social media approaches resulted in 29,000 people with ME/CFS in the UK pre-registering their interest in participating. We will perform a genome-wide association study, comparing participants' genotypes with those from UK Biobank as controls. This should generate hypotheses regarding the genes, mechanisms and cell types contributing to ME/CFS disease aetiology. DISCUSSION: The DecodeME study has been reviewed and given a favourable opinion by the North West - Liverpool Central Research Ethics Committee (21/NW/0169). Relevant documents will be available online ( www.decodeme.org.uk ). Genetic data will be disseminated as associated variants and genomic intervals, and as summary statistics. Results will be reported on the DecodeME website and via open access publications.
Asunto(s)
COVID-19 , Síndrome de Fatiga Crónica , Adolescente , Síndrome de Fatiga Crónica/genética , Estudio de Asociación del Genoma Completo , Humanos , Estudios Longitudinales , SARS-CoV-2RESUMEN
A series of novel 6-aminofuro[3,2-c]pyridines as kinase inhibitors is described, most notably, OSI-296 (6). We discuss our exploration of structure-activity relationships and optimization leading to OSI-296 and disclose its pharmacological activity against cMET and RON in cellular assays. OSI-296 is a potent and selective inhibitor of cMET and RON kinases that shows in vivo efficacy in tumor xenografts models upon oral dosing and is well tolerated.
Asunto(s)
Antineoplásicos/química , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Piridinas/química , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Semivida , Humanos , Concentración de Iones de Hidrógeno , Ratones , Ratones Desnudos , Mutación , Neoplasias/tratamiento farmacológico , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Piridinas/farmacocinética , Piridinas/uso terapéutico , Ratas , Ratas Sprague-Dawley , Proteínas Tirosina Quinasas Receptoras/metabolismo , Relación Estructura-Actividad , Trasplante HeterólogoRESUMEN
Background: People with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) experience core symptoms of post-exertional malaise, unrefreshing sleep, and cognitive impairment. Despite numbering 0.2-0.4% of the population, no laboratory test is available for their diagnosis, no effective therapy exists for their treatment, and no scientific breakthrough regarding pathogenesis has been made. It remains unknown, despite decades of small-scale studies, whether individuals experience different types of ME/CFS separated by onset-type, sex or age. Methods: DecodeME is a large population-based study of ME/CFS that recruited 17,074 participants in the first 3 months following full launch. Detailed questionnaire responses from UK-based participants who all reported being diagnosed with ME/CFS by a health professional provided an unparalleled opportunity to investigate, using logistic regression, whether ME/CFS severity or onset type is significantly associated with sex, age, illness duration, comorbid conditions or symptoms. Results: The well-established sex-bias among ME/CFS patients is evident in the initial DecodeME cohort: 83.5% of participants were females. What was not known previously was that females tend to have more comorbidities than males. Moreover, being female, being older and being over 10 years from ME/CFS onset are significantly associated with greater severity. Five different ME/CFS onset types were examined in the self-reported data: those with ME/CFS onset (i) after glandular fever (infectious mononucleosis); (ii) after COVID-19 infection; (iii) after other infections; (iv) without an infection at onset; and, (v) where the occurrence of an infection at or preceding onset is not known. Among other findings, ME/CFS onset with unknown infection status was significantly associated with active fibromyalgia. Conclusions: DecodeME participants differ in symptoms, comorbid conditions and/or illness severity when stratified by their sex-at-birth and/or infection around the time of ME/CFS onset.
Myalgic Encephalomyelitis / Chronic Fatigue Syndrome (ME/CFS) is a chronic disease that affects an estimated 250,000 people in the UK. Its defining symptom is post-exertional malaise, an excessive delayed worsening of symptoms following even minor physical or mental exertion. For those with it, ME/CFS means disability and poor quality of life. DecodeME is a research study which is looking for DNA differences between people with ME/CFS and people without any health problems. People with ME/CFS who take part in DecodeME complete a questionnaire that assesses their symptoms and whether they will then be invited to donate a DNA sample. This paper analyses the answers to this questionnaire; we will publish results of the DNA analysis separately. So far, more than 17 thousand people with ME/CFS have completed the DecodeME questionnaire. Their answers help us to address the question: "Are there different types of ME/CFS linked to different causes and how severe it becomes?" Results show that people with ME/CFS do not form a single group reporting similar symptoms and additional medical conditions. Instead, participants who had an infection at the start of their ME/CFS reported a different pattern of symptoms and conditions compared to those without an infection. It is well known that most people with ME/CFS are females. What was not clear previously was that females tend to have more additional health conditions. Also, being female, being older and being over 10 years from ME/CFS onset all make it more likely that someone is more severely affected by their ME/CFS. These findings could indicate that by studying people with different ME/CFS onset-types separately rather than analysing all people with ME/CFS together it will be easier to understand what is going wrong.
RESUMEN
Preclinical and emerging clinical evidence suggests that inhibiting insulin-like growth factor 1 receptor (IGF-1R) signaling may offer a promising therapeutic strategy for the treatment of several types of cancer. This Letter describes the medicinal chemistry effort towards a series of 8-amino-imidazo[1,5-a]pyrazine derived inhibitors of IGF-1R which features a substituted quinoline moiety at the C1 position and a cyclohexyl linking moiety at the C3 position. Lead optimization efforts which included the optimization of structure-activity relationships and drug metabolism and pharmacokinetic properties led to the identification of compound 9m, a potent, selective and orally bioavailable inhibitor of IGF-1R with in vivo efficacy in an IGF-driven mouse xenograft model.
Asunto(s)
Antineoplásicos/química , Bencimidazoles/química , Imidazoles/química , Inhibidores de Proteínas Quinasas/química , Pirazinas/química , Receptor IGF Tipo 1/antagonistas & inhibidores , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Bencimidazoles/farmacocinética , Bencimidazoles/uso terapéutico , Ratones , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirazinas/farmacocinética , Pirazinas/uso terapéutico , Receptor IGF Tipo 1/metabolismo , Relación Estructura-Actividad , Trasplante HeterólogoRESUMEN
This letter describes a series of small molecule inhibitors of IGF-1R with unique time-dependent binding kinetics and slow off-rates. Structure-activity and structure-kinetic relationships were elucidated and guided further optimizations within the series, culminating in compound 2. With an IGF-1R dissociative half-life (t 1/2) of >100 h, compound 2 demonstrated significant and extended PD effects in conjunction with tumor growth inhibition in xenograft models at a remarkably low and intermittent dose, which correlated with the observed in vitro slow off-rate properties.
RESUMEN
The phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway is frequently activated in human cancers, and mTOR is a clinically validated target. mTOR forms two distinct multiprotein complexes, mTORC1 and mTORC2, which regulate cell growth, metabolism, proliferation, and survival. Rapamycin and its analogues partially inhibit mTOR through allosteric binding to mTORC1, but not mTORC2, and have shown clinical utility in certain cancers. Here, we report the preclinical characterization of OSI-027, a selective and potent dual inhibitor of mTORC1 and mTORC2 with biochemical IC(50) values of 22 nmol/L and 65 nmol/L, respectively. OSI-027 shows more than 100-fold selectivity for mTOR relative to PI3Kα, PI3Kß, PI3Kγ, and DNA-PK. OSI-027 inhibits phosphorylation of the mTORC1 substrates 4E-BP1 and S6K1 as well as the mTORC2 substrate AKT in diverse cancer models in vitro and in vivo. OSI-027 and OXA-01 (close analogue of OSI-027) potently inhibit proliferation of several rapamycin-sensitive and -insensitive nonengineered and engineered cancer cell lines and also, induce cell death in tumor cell lines with activated PI3K-AKT signaling. OSI-027 shows concentration-dependent pharmacodynamic effects on phosphorylation of 4E-BP1 and AKT in tumor tissue with resulting tumor growth inhibition. OSI-027 shows robust antitumor activity in several different human xenograft models representing various histologies. Furthermore, in COLO 205 and GEO colon cancer xenograft models, OSI-027 shows superior efficacy compared with rapamycin. Our results further support the important role of mTOR as a driver of tumor growth and establish OSI-027 as a potent anticancer agent. OSI-027 is currently in phase I clinical trials in cancer patients.
Asunto(s)
Imidazoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas/antagonistas & inhibidores , Sirolimus/farmacología , Factores de Transcripción/antagonistas & inhibidores , Triazinas/farmacología , Animales , Apoptosis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Femenino , Células HeLa , Humanos , Imidazoles/química , Imidazoles/farmacocinética , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Desnudos , Complejos Multiproteicos , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacocinética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR , Triazinas/química , Triazinas/farmacocinética , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
This report describes the investigation of a series of 5,7-disubstituted imidazo[5,1-f][1,2,4]triazine inhibitors of insulin-like growth factor-1 receptor (IGF-1R) and insulin receptor (IR). Structure-activity relationship exploration and optimization leading to the identification, characterization, and pharmacological activity of compound 9b, a potent, selective, well-tolerated, and orally bioavailable dual inhibitor of IGF-1R and IR with in vivo efficacy in tumor xenograft models, is discussed.