Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Chem Phys ; 160(20)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38808747

RESUMEN

Experimental studies of the products of elementary gas-phase chemical reactions occurring at low temperatures (<50 K) are very scarce, but of importance for fundamental studies of reaction dynamics, comparisons with high-level quantum dynamical calculations, and, in particular, for providing data for the modeling of cold astrophysical environments, such as dense interstellar clouds, the atmospheres of the outer planets, and cometary comae. This study describes the construction and testing of a new apparatus designed to measure product branching fractions of elementary bimolecular gas-phase reactions at low temperatures. It combines chirped-pulse Fourier transform millimeter wave spectroscopy with continuous uniform supersonic flows and high repetition rate laser photolysis. After a comprehensive description of the apparatus, the experimental procedures and data processing protocols used for signal recovery, the capabilities of the instrument are explored by the study of the photodissociation of acrylonitrile and the detection of two of its photoproducts, HC3N and HCN. A description is then given of a study of the reactions of the CN radical with C2H2 at 30 K, detecting the HC3N product, and with C2H6 at 10 K, detecting the HCN product. A calibration of these two products is finally attempted using the photodissociation of acrylonitrile as a reference process. The limitations and possible improvements in the instrument are discussed in conclusion.

2.
J Phys Chem A ; 126(17): 2716-2728, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35442689

RESUMEN

We have conducted an extensive search for nitrogen-, oxygen-, and sulfur-bearing heterocycles toward Taurus Molecular Cloud 1 (TMC-1) using the deep, broadband centimeter-wavelength spectral line survey of the region from the GOTHAM large project on the Green Bank Telescope. Despite their ubiquity in terrestrial chemistry, and the confirmed presence of a number of cyclic and polycyclic hydrocarbon species in the source, we find no evidence for the presence of any heterocyclic species. Here, we report the derived upper limits on the column densities of these molecules obtained by Markov Chain Monte Carlo (MCMC) analysis and compare this approach to traditional single-line upper limit measurements. We further hypothesize why these molecules are absent in our data, how they might form in interstellar space, and the nature of observations that would be needed to secure their detection.


Asunto(s)
Astronomía , Medio Ambiente Extraterrestre , Método de Montecarlo , Oxígeno/química , Azufre
3.
Proc Natl Acad Sci U S A ; 115(12): 2918-2923, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29507196

RESUMEN

Oceanic Anoxic Event 2 (OAE 2), occurring ∼94 million years ago, was one of the most extreme carbon cycle and climatic perturbations of the Phanerozoic Eon. It was typified by a rapid rise in atmospheric CO2, global warming, and marine anoxia, leading to the widespread devastation of marine ecosystems. However, the precise timing and extent to which oceanic anoxic conditions expanded during OAE 2 remains unresolved. We present a record of global ocean redox changes during OAE 2 using a combined geochemical and carbon cycle modeling approach. We utilize a continuous, high-resolution record of uranium isotopes in pelagic and platform carbonate sediments to quantify the global extent of seafloor anoxia during OAE 2. This dataset is then compared with a dynamic model of the coupled global carbon, phosphorus, and uranium cycles to test hypotheses for OAE 2 initiation. This unique approach highlights an intra-OAE complexity that has previously been underconstrained, characterized by two expansions of anoxia separated by an episode of globally significant reoxygenation coincident with the "Plenus Cold Event." Each anoxic expansion event was likely driven by rapid atmospheric CO2 injections from multiphase Large Igneous Province activity.

4.
J Phys Chem A ; 124(39): 7950-7958, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32877606

RESUMEN

CN is known for its fast reactions with hydrocarbons at low temperatures, but relatively few studies have focused on the reactions between CN and aromatic molecules. The recent detection of benzonitrile in the interstellar medium, believed to be produced by the reaction of CN and benzene, has ignited interest in studying these reactions. Here, we report rate constants of the CN + toluene (C7H8) reaction between 15 and 294 K using a CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme; reaction kinetics in uniform supersonic flow) apparatus coupled with the pulsed laser photolysis-laser-induced fluorescence (PLP-LIF) technique. We also present the stationary points on the potential energy surface of this reaction to study the available reaction pathways. We find the rate constant does not change over this temperature range, with an average value of (4.1 ± 0.2) × 10-10 cm3 s-1, which is notably faster than the only previous measurement at 105 K. While the reason for this disagreement is unknown, we discuss the possibility that it is related to enhanced multiphoton effects in the previous work.

5.
J Phys Chem A ; 123(46): 9995-10003, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31647680

RESUMEN

Methanol (CH3OH) is considered by astronomers to be the simplest complex organic molecule (COM) and has been detected in various astrophysical environments, including protoplanetary disks, comets, and the interstellar medium (ISM). Studying the reactivity of methanol at low temperatures will aid our understanding of the formation of other complex and potentially prebiotic molecules. A major destruction route for many neutral COMs, including methanol, is via their reactions with radicals such as CN, which is ubiquitous in space. Here, we study the kinetics of the reaction between methanol and the CN radical using the well-established CRESU technique (a French acronym standing for Reaction Kinetics in Uniform Supersonic Flow) combined with Pulsed-Laser Photolysis-Laser-Induced Fluorescence (PLP-LIF). Electronic structure calculations were also performed to identify the exothermic channels through which this reaction can proceed. Our results for the rate coefficient are represented by the modified Arrhenius equation, k(T) = 1.26 × 10-11(T/300 K)-0.7 exp(-5.4 K/T), and display a negative temperature dependence over the temperature range 16.7-296 K, which is typical of what has been seen previously for other radical-neutral reactions that do not possess potential energy barriers. The rate coefficients obtained at room temperature strongly disagree with a previous kinetics study, which is currently available in the Kinetics Database for Astrochemistry (KIDA) and therefore used in some astrochemical models.

6.
Phys Chem Chem Phys ; 20(8): 5553-5568, 2018 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-29387847

RESUMEN

Dust grains in cold, dense interstellar clouds build up appreciable ice mantles through the accretion and subsequent surface chemistry of atoms and molecules from the gas. These mantles, of thicknesses on the order of 100 monolayers, are primarily composed of H2O, CO, and CO2. Laboratory experiments using interstellar ice analogues have shown that porosity could be present and can facilitate diffusion of molecules along the inner pore surfaces. However, the movement of molecules within and upon the ice is poorly described by current chemical kinetics models, making it difficult either to reproduce the formation of experimental porous ice structures or to extrapolate generalized laboratory results to interstellar conditions. Here we use the off-lattice Monte Carlo kinetics model MIMICK to investigate the effects that various deposition parameters have on laboratory ice structures. The model treats molecules as isotropic spheres of a uniform size, using a Lennard-Jones potential. We reproduce experimental trends in the density of amorphous solid water (ASW) for varied deposition angle, rate and surface temperature; ice density decreases when the incident angle or deposition rate is increased, while increasing temperature results in a more-compact water ice. The models indicate that the density behaviour at higher temperatures (≥80 K) is dependent on molecular rearrangement resulting from thermal diffusion. To reproduce trends at lower temperatures, it is necessary to take account of non-thermal diffusion by newly-adsorbed molecules, which bring kinetic energy both from the gas phase and from their acceleration into a surface binding site. Extrapolation of the model to conditions appropriate to protoplanetary disks, in which direct accretion of water from the gas-phase may be the dominant ice formation mechanism, indicate that these ices may be less porous than laboratory ices.

7.
Nat Chem ; 14(7): 811-815, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35513509

RESUMEN

HCN and its unstable isomer HNC are widely observed throughout the interstellar medium, with the HNC/HCN abundance ratio correlating strongly with temperature. In very cold environments HNC can even appear more abundant than HCN. Here we use a chirped pulse Fourier transform spectrometer to measure the pressure broadening of HCN and HNC, simultaneously formed in situ by laser photolysis and cooled to low temperatures in uniform supersonic flows of helium. Despite the apparent similarity of these systems, we find the HNC-He cross section to be more than twice as big as the HCN-He cross section at 10 K, confirming earlier quantum calculations. Our experimental results are supported by high-level scattering calculations and are also expected to apply with para-H2, demonstrating that HCN and HNC have different collisional excitation properties that strongly influence the derived interstellar abundances.

8.
Science ; 371(6535): 1265-1269, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33737489

RESUMEN

Unidentified infrared emission bands are ubiquitous in many astronomical sources. These bands are widely, if not unanimously, attributed to collective emissions from polycyclic aromatic hydrocarbon (PAH) molecules, yet no single species of this class has been identified in space. Using spectral matched filtering of radio data from the Green Bank Telescope, we detected two nitrile-group-functionalized PAHs, 1- and 2-cyanonaphthalene, in the interstellar medium. Both bicyclic ring molecules were observed in the TMC-1 molecular cloud. In this paper, we discuss potential in situ gas-phase PAH formation pathways from smaller organic precursor molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA