Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Sci ; 129(7): 1319-28, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26869224

RESUMEN

TPX2 is a widely conserved microtubule-associated protein that is required for mitotic spindle formation and function. Previous studies have demonstrated that TPX2 is required for the nucleation of microtubules around chromosomes; however, the molecular mechanism by which TPX2 promotes microtubule nucleation remains a mystery. In this study, we found that TPX2 acts to suppress tubulin subunit off-rates during microtubule assembly and disassembly, thus allowing for the support of unprecedentedly slow rates of plus-end microtubule growth, and also leading to a dramatically reduced microtubule shortening rate. These changes in microtubule dynamics can be explained in computational simulations by a moderate increase in tubulin-tubulin bond strength upon TPX2 association with the microtubule lattice, which in turn acts to reduce the departure rate of tubulin subunits from the microtubule ends. Thus, the direct suppression of tubulin subunit off-rates by TPX2 during microtubule growth and shortening could provide a molecular mechanism to explain the nucleation of new microtubules in the presence of TPX2.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitosis/fisiología , Huso Acromático/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Línea Celular , Células Sf9 , Spodoptera
2.
Curr Biol ; 30(4): 610-623.e5, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-31928876

RESUMEN

Neuronal axons terminate as synaptic boutons that form stable yet plastic connections with their targets. Synaptic bouton development relies on an underlying network of both long-lived and dynamic microtubules that provide structural stability for the boutons while also allowing for their growth and remodeling. However, a molecular-scale mechanism that explains how neurons appropriately balance these two microtubule populations remains a mystery. We hypothesized that α-tubulin acetyltransferase (αTAT), which both stabilizes long-lived microtubules against mechanical stress via acetylation and has been implicated in promoting microtubule dynamics, could play a role in this process. Using the Drosophila neuromuscular junction as a model, we found that non-enzymatic dαTAT activity limits the growth of synaptic boutons by affecting dynamic, but not stable, microtubules. Loss of dαTAT results in the formation of ectopic boutons. These ectopic boutons can be similarly suppressed by resupplying enzyme-inactive dαTAT or by treatment with a low concentration of the microtubule-targeting agent vinblastine, which acts to suppress microtubule dynamics. Biophysical reconstitution experiments revealed that non-enzymatic αTAT1 activity destabilizes dynamic microtubules but does not substantially impact the stability of long-lived microtubules. Further, during microtubule growth, non-enzymatic αTAT1 activity results in increasingly extended tip structures, consistent with an increased rate of acceleration of catastrophe frequency with microtubule age, perhaps via tip structure remodeling. Through these mechanisms, αTAT enriches for stable microtubules at the expense of dynamic ones. We propose that the specific suppression of dynamic microtubules by non-enzymatic αTAT activity regulates the remodeling of microtubule networks during synaptic bouton development.


Asunto(s)
Acetiltransferasas/metabolismo , Drosophila melanogaster/metabolismo , Unión Neuromuscular/fisiología , Terminales Presinápticos/fisiología , Animales , Drosophila melanogaster/enzimología , Drosophila melanogaster/crecimiento & desarrollo , Larva/enzimología , Larva/crecimiento & desarrollo , Larva/metabolismo
3.
Dev Cell ; 31(1): 61-72, 2014 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-25313961

RESUMEN

During cell division, a microtubule-based mitotic spindle mediates the faithful segregation of duplicated chromosomes into daughter cells. Proper length control of the metaphase mitotic spindle is critical to this process and is thought to be achieved through a mechanism in which spindle pole separation forces from plus-end-directed motors are balanced by forces from minus-end-directed motors that pull spindle poles together. However, in contrast to this model, metaphase mitotic spindles with inactive kinesin-14 minus-end-directed motors often have shorter spindle lengths, along with poorly aligned spindle microtubules. A mechanistic explanation for this paradox is unknown. Using computational modeling, in vitro reconstitution, live-cell fluorescence microscopy, and electron microscopy, we now find that the budding yeast kinesin-14 molecular motor Kar3-Cik1 can efficiently align spindle microtubules along the spindle axis. This then allows plus-end-directed kinesin-5 motors to efficiently exert the outward microtubule sliding forces needed for proper spindle bipolarity.


Asunto(s)
Cinesinas/metabolismo , Microtúbulos/metabolismo , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo , Huso Acromático/metabolismo , Proteínas de Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Huso Acromático/ultraestructura
4.
Curr Biol ; 23(14): 1342-8, 2013 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-23831290

RESUMEN

Microtubules are key structural and transport elements in cells. The dynamics at microtubule ends are characterized by periods of slow growth, followed by stochastic switching events termed "catastrophes," in which microtubules suddenly undergo rapid shortening. Growing microtubules are thought to be protected from catastrophe by a GTP-tubulin "cap": GTP-tubulin subunits add to the tips of growing microtubules but are subsequently hydrolyzed to GDP-tubulin subunits once they are incorporated into the microtubule lattice. Loss of the GTP-tubulin cap exposes GDP-tubulin subunits at the microtubule tip, resulting in a catastrophe event. However, the mechanistic basis for sudden loss of the GTP cap, leading to catastrophe, is not known. To investigate microtubule catastrophe events, we performed 3D mechanochemical simulations that account for interactions between neighboring protofilaments. We found that there are two separate factors that contribute to catastrophe events in the 3D simulation: the GTP-tubulin cap size, which settles into a steady-state value that depends on the free tubulin concentration during microtubule growth, and the structure of the microtubule tip. Importantly, 3D simulations predict, and both fluorescence and electron microscopy experiments confirm, that microtubule tips become more tapered as the microtubule grows. This effect destabilizes the tip and ultimately contributes to microtubule catastrophe. Thus, the likelihood of a catastrophe event may be intimately linked to the aging physical structure of the growing microtubule tip. These results have important consequences for catastrophe regulation in cells, as microtubule-associated proteins could promote catastrophe events in part by modifying microtubule tip structures.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Simulación por Computador , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/química , Microtúbulos/química , Microtúbulos/ultraestructura , Modelos Moleculares , Saccharomycetales/citología , Saccharomycetales/metabolismo , Tubulina (Proteína)/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA