Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Med Chem ; 145: 770-789, 2018 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-29407590

RESUMEN

Cannabinoid type 2 (CB2) receptor continues to emerge as a promising drug target for many diseases and conditions. New tools for studying CB2 receptor are required to further inform how this receptor functions in healthy and diseased states. The alkyl indole scaffold is a well-recognised ligand for cannabinoid receptors, and in this study the indole C5-7 positions were explored for linker and fluorophore attachment. A new high affinity, CB2 receptor selective inverse agonist was identified (16b) along with a general trend of C5-substituted indoles acting as agonists versus C7-substituted indoles acting as inverse agonists. The indole C7 position was found to be the most tolerant to linker extension and resulted in a high affinity inverse agonist with a medium length linker (19). Although a high affinity fluorescent ligand for CB2 receptor was not identified in this study, the indole C7 position shows great promise for fluorophore or probe attachment.


Asunto(s)
Colorantes Fluorescentes/farmacología , Indoles/farmacología , Receptor Cannabinoide CB2/agonistas , Relación Dosis-Respuesta a Droga , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Humanos , Indoles/síntesis química , Indoles/química , Ligandos , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
2.
Medchemcomm ; 9(12): 2055-2067, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30647881

RESUMEN

Cannabinoid type 2 (CB2) receptor has been implicated in several diseases and conditions, however no CB2 receptor selective drugs have made it to market. The aim of this study was to develop fluorescent ligands as CB2 receptor tools, to enable an increased understanding of CB2 receptor expression and signalling and thereby accelerate drug discovery. Fluorescent ligands have been successfully developed for other receptors, however none with adequate subtype selectivity or imaging properties have been reported for CB2 receptor. A series of 1,8-naphthyridin-2-(1H)-one-3-carboxamides with linkers and fluorophores appended in the N1 and C3-positions were developed. Molecular modelling indicated the C3 cis-cyclohexanol-linked compounds directed the linker out of the CB2 receptor between transmembrane helices 1 and 7. Herein we report fluorescent ligand 32 (hCB2 pK i = 6.33 ± 0.02) as one of the highest affinity, selective CB2 receptor fluorescent ligands reported. Despite 32 displaying poor specific labelling of CB2 receptor, the naphthyridine scaffold with this linker remains highly promising for future development of CB2 receptor tools.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA