Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(11): 1974-1985.e12, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35512704

RESUMEN

Comprehensive sequencing of patient tumors reveals genomic mutations across tumor types that enable tumorigenesis and progression. A subset of oncogenic driver mutations results in neomorphic activity where the mutant protein mediates functions not engaged by the parental molecule. Here, we identify prevalent variant-enabled neomorph-protein-protein interactions (neoPPI) with a quantitative high-throughput differential screening (qHT-dS) platform. The coupling of highly sensitive BRET biosensors with miniaturized coexpression in an ultra-HTS format allows large-scale monitoring of the interactions of wild-type and mutant variant counterparts with a library of cancer-associated proteins in live cells. The screening of 17,792 interactions with 2,172,864 data points revealed a landscape of gain of interactions encompassing both oncogenic and tumor suppressor mutations. For example, the recurrent BRAF V600E lesion mediates KEAP1 neoPPI, rewiring a BRAFV600E/KEAP1 signaling axis and creating collateral vulnerability to NQO1 substrates, offering a combination therapeutic strategy. Thus, cancer genomic alterations can create neo-interactions, informing variant-directed therapeutic approaches for precision medicine.


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas B-raf , Carcinogénesis , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Mutación , Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo
2.
Cell ; 185(12): 2184-2199.e16, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35649412

RESUMEN

The factors driving therapy resistance in diffuse glioma remain poorly understood. To identify treatment-associated cellular and genetic changes, we analyzed RNA and/or DNA sequencing data from the temporally separated tumor pairs of 304 adult patients with isocitrate dehydrogenase (IDH)-wild-type and IDH-mutant glioma. Tumors recurred in distinct manners that were dependent on IDH mutation status and attributable to changes in histological feature composition, somatic alterations, and microenvironment interactions. Hypermutation and acquired CDKN2A deletions were associated with an increase in proliferating neoplastic cells at recurrence in both glioma subtypes, reflecting active tumor growth. IDH-wild-type tumors were more invasive at recurrence, and their neoplastic cells exhibited increased expression of neuronal signaling programs that reflected a possible role for neuronal interactions in promoting glioma progression. Mesenchymal transition was associated with the presence of a myeloid cell state defined by specific ligand-receptor interactions with neoplastic cells. Collectively, these recurrence-associated phenotypes represent potential targets to alter disease progression.


Asunto(s)
Neoplasias Encefálicas , Glioma , Microambiente Tumoral , Adulto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Evolución Molecular , Genes p16 , Glioma/genética , Glioma/patología , Humanos , Isocitrato Deshidrogenasa/genética , Mutación , Recurrencia Local de Neoplasia
3.
Mod Pathol ; 37(1): 100373, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37925056

RESUMEN

The current flow cytometric analysis of blood and bone marrow samples for diagnosis of acute myeloid leukemia (AML) relies heavily on manual intervention in the processing and analysis steps, introducing significant subjectivity into resulting diagnoses and necessitating highly trained personnel. Furthermore, concurrent molecular characterization via cytogenetics and targeted sequencing can take multiple days, delaying patient diagnosis and treatment. Attention-based multi-instance learning models (ABMILMs) are deep learning models that make accurate predictions and generate interpretable insights regarding the classification of a sample from individual events/cells; nonetheless, these models have yet to be applied to flow cytometry data. In this study, we developed a computational pipeline using ABMILMs for the automated diagnosis of AML cases based exclusively on flow cytometric data. Analysis of 1820 flow cytometry samples shows that this pipeline provides accurate diagnoses of acute leukemia (area under the receiver operating characteristic curve [AUROC] 0.961) and accurately differentiates AML vs B- and T-lymphoblastic leukemia (AUROC 0.965). Models for prediction of 9 cytogenetic aberrancies and 32 pathogenic variants in AML provide accurate predictions, particularly for t(15;17)(PML::RARA) [AUROC 0.929], t(8;21)(RUNX1::RUNX1T1) (AUROC 0.814), and NPM1 variants (AUROC 0.807). Finally, we demonstrate how these models generate interpretable insights into which individual flow cytometric events and markers deliver optimal diagnostic utility, providing hematopathologists with a data visualization tool for improved data interpretation, as well as novel biological associations between flow cytometric marker expression and cytogenetic/molecular variants in AML. Our study is the first to illustrate the feasibility of using deep learning-based analysis of flow cytometric data for automated AML diagnosis and molecular characterization.


Asunto(s)
Aprendizaje Profundo , Leucemia Mieloide Aguda , Humanos , Citometría de Flujo/métodos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Enfermedad Aguda , Citogenética
4.
Mod Pathol ; 37(3): 100422, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38185250

RESUMEN

Machine learning (ML) models are poised to transform surgical pathology practice. The most successful use attention mechanisms to examine whole slides, identify which areas of tissue are diagnostic, and use them to guide diagnosis. Tissue contaminants, such as floaters, represent unexpected tissue. Although human pathologists are extensively trained to consider and detect tissue contaminants, we examined their impact on ML models. We trained 4 whole-slide models. Three operate in placenta for the following functions: (1) detection of decidual arteriopathy, (2) estimation of gestational age, and (3) classification of macroscopic placental lesions. We also developed a model to detect prostate cancer in needle biopsies. We designed experiments wherein patches of contaminant tissue are randomly sampled from known slides and digitally added to patient slides and measured model performance. We measured the proportion of attention given to contaminants and examined the impact of contaminants in the t-distributed stochastic neighbor embedding feature space. Every model showed performance degradation in response to one or more tissue contaminants. Decidual arteriopathy detection--balanced accuracy decreased from 0.74 to 0.69 ± 0.01 with addition of 1 patch of prostate tissue for every 100 patches of placenta (1% contaminant). Bladder, added at 10% contaminant, raised the mean absolute error in estimating gestational age from 1.626 weeks to 2.371 ± 0.003 weeks. Blood, incorporated into placental sections, induced false-negative diagnoses of intervillous thrombi. Addition of bladder to prostate cancer needle biopsies induced false positives, a selection of high-attention patches, representing 0.033 mm2, and resulted in a 97% false-positive rate when added to needle biopsies. Contaminant patches received attention at or above the rate of the average patch of patient tissue. Tissue contaminants induce errors in modern ML models. The high level of attention given to contaminants indicates a failure to encode biological phenomena. Practitioners should move to quantify and ameliorate this problem.


Asunto(s)
Placenta , Neoplasias de la Próstata , Embarazo , Masculino , Humanos , Femenino , Recién Nacido , Placenta/patología , Aprendizaje Automático , Biopsia con Aguja , Próstata/patología , Neoplasias de la Próstata/patología
5.
Mod Pathol ; 36(2): 100003, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36853796

RESUMEN

The pathologic diagnosis of bone marrow disorders relies in part on the microscopic analysis of bone marrow aspirate (BMA) smears and the manual counting of marrow nucleated cells to obtain a differential cell count (DCC). This manual process has significant limitations, including the analysis of only a small subset of optimal slide areas and nucleated cells, as well as interobserver variability due to differences in cell selection and classification. To address these shortcomings, we developed an automated machine learning-based pipeline for obtaining 11-component DCCs on whole-slide BMAs. This pipeline uses a sequential process of identifying optimal BMA regions with high proportions of marrow nucleated cells, detecting individual cells within these optimal areas, and classifying these cells into 1 of 11 DCC components. Convolutional neural network models were trained on 396,048 BMA region, 28,914 cell boundary, and 1,510,976 cell class images from manual annotations. The resulting automated pipeline produced 11-component DCCs that demonstrated a high statistical and diagnostic concordance with manual DCCs among a heterogeneous group of testing BMA slides with varying pathologies and cellularities. Additionally, we demonstrated that an automated analysis can reduce the intraslide variance in DCCs by analyzing the whole slide and marrow nucleated cells within all optimal regions. Finally, the pipeline outputs of region classification, cell detection, and cell classification can be visualized using whole-slide image analysis software. This study demonstrates the feasibility of a fully automated pipeline for generating DCCs on scanned whole-slide BMA images, with the potential for improving the current standard of practice for utilizing BMA smears in the laboratory analysis of hematologic disorders.


Asunto(s)
Médula Ósea , Procesamiento de Imagen Asistido por Computador , Humanos , Recuento de Células , Aprendizaje Automático , Redes Neurales de la Computación
6.
Mod Pathol ; 36(8): 100196, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37100227

RESUMEN

Microscopic examination of pathology slides is essential to disease diagnosis and biomedical research. However, traditional manual examination of tissue slides is laborious and subjective. Tumor whole-slide image (WSI) scanning is becoming part of routine clinical procedures and produces massive data that capture tumor histologic details at high resolution. Furthermore, the rapid development of deep learning algorithms has significantly increased the efficiency and accuracy of pathology image analysis. In light of this progress, digital pathology is fast becoming a powerful tool to assist pathologists. Studying tumor tissue and its surrounding microenvironment provides critical insight into tumor initiation, progression, metastasis, and potential therapeutic targets. Nucleus segmentation and classification are critical to pathology image analysis, especially in characterizing and quantifying the tumor microenvironment (TME). Computational algorithms have been developed for nucleus segmentation and TME quantification within image patches. However, existing algorithms are computationally intensive and time consuming for WSI analysis. This study presents Histology-based Detection using Yolo (HD-Yolo), a new method that significantly accelerates nucleus segmentation and TME quantification. We demonstrate that HD-Yolo outperforms existing WSI analysis methods in nucleus detection, classification accuracy, and computation time. We validated the advantages of the system on 3 different tissue types: lung cancer, liver cancer, and breast cancer. For breast cancer, nucleus features by HD-Yolo were more prognostically significant than both the estrogen receptor status by immunohistochemistry and the progesterone receptor status by immunohistochemistry. The WSI analysis pipeline and a real-time nucleus segmentation viewer are available at https://github.com/impromptuRong/hd_wsi.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Profundo , Humanos , Femenino , Microambiente Tumoral , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias de la Mama/patología
7.
Bioinformatics ; 38(2): 513-519, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34586355

RESUMEN

MOTIVATION: Nucleus detection, segmentation and classification are fundamental to high-resolution mapping of the tumor microenvironment using whole-slide histopathology images. The growing interest in leveraging the power of deep learning to achieve state-of-the-art performance often comes at the cost of explainability, yet there is general consensus that explainability is critical for trustworthiness and widespread clinical adoption. Unfortunately, current explainability paradigms that rely on pixel saliency heatmaps or superpixel importance scores are not well-suited for nucleus classification. Techniques like Grad-CAM or LIME provide explanations that are indirect, qualitative and/or nonintuitive to pathologists. RESULTS: In this article, we present techniques to enable scalable nuclear detection, segmentation and explainable classification. First, we show how modifications to the widely used Mask R-CNN architecture, including decoupling the detection and classification tasks, improves accuracy and enables learning from hybrid annotation datasets like NuCLS, which contain mixtures of bounding boxes and segmentation boundaries. Second, we introduce an explainability method called Decision Tree Approximation of Learned Embeddings (DTALE), which provides explanations for classification model behavior globally, as well as for individual nuclear predictions. DTALE explanations are simple, quantitative, and can flexibly use any measurable morphological features that make sense to practicing pathologists, without sacrificing model accuracy. Together, these techniques present a step toward realizing the promise of computational pathology in computer-aided diagnosis and discovery of morphologic biomarkers. AVAILABILITY AND IMPLEMENTATION: Relevant code can be found at github.com/CancerDataScience/NuCLS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Núcleo Celular , Árboles de Decisión
8.
Lab Invest ; 101(7): 942-951, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33674784

RESUMEN

The placenta is the first organ to form and performs the functions of the lung, gut, kidney, and endocrine systems. Abnormalities in the placenta cause or reflect most abnormalities in gestation and can have life-long consequences for the mother and infant. Placental villi undergo a complex but reproducible sequence of maturation across the third-trimester. Abnormalities of villous maturation are a feature of gestational diabetes and preeclampsia, among others, but there is significant interobserver variability in their diagnosis. Machine learning has emerged as a powerful tool for research in pathology. To capture the volume of data and manage heterogeneity within the placenta, we developed GestaltNet, which emulates human attention to high-yield areas and aggregation across regions. We used this network to estimate the gestational age (GA) of scanned placental slides and compared it to a baseline model lacking the attention and aggregation functions. In the test set, GestaltNet showed a higher r2 (0.9444 vs. 0.9220) than the baseline model. The mean absolute error (MAE) between the estimated and actual GA was also better in the GestaltNet (1.0847 weeks vs. 1.4505 weeks). On whole-slide images, we found the attention sub-network discriminates areas of terminal villi from other placental structures. Using this behavior, we estimated GA for 36 whole slides not previously seen by the model. In this task, similar to that faced by human pathologists, the model showed an r2 of 0.8859 with an MAE of 1.3671 weeks. We show that villous maturation is machine-recognizable. Machine-estimated GA could be useful when GA is unknown or to study abnormalities of villous maturation, including those in gestational diabetes or preeclampsia. GestaltNet points toward a future of genuinely whole-slide digital pathology by incorporating human-like behaviors of attention and aggregation.


Asunto(s)
Aprendizaje Profundo , Edad Gestacional , Interpretación de Imagen Asistida por Computador/métodos , Placenta/diagnóstico por imagen , Placenta/patología , Diabetes Gestacional/patología , Femenino , Histocitoquímica , Humanos , Preeclampsia/patología , Embarazo
9.
Histopathology ; 78(6): 791-804, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33211332

RESUMEN

Whole slide imaging, which is an important technique in the field of digital pathology, has recently been the subject of increased interest and avenues for utilisation, and with more widespread whole slide image (WSI) utilisation, there will also be increased interest in and implementation of image analysis (IA) techniques. IA includes artificial intelligence (AI) and targeted or hypothesis-driven algorithms. In the overall pathology field, the number of citations related to these topics has increased in recent years. Renal pathology is one anatomical pathology subspecialty that has utilised WSIs and IA algorithms; it can be argued that renal transplant pathology could be particularly suited for whole slide imaging and IA, as renal transplant pathology is frequently classified by use of the semiquantitative Banff classification of renal allograft pathology. Hypothesis-driven/targeted algorithms have been used in the past for the assessment of a variety of features in the kidney (e.g. interstitial fibrosis, tubular atrophy, inflammation); in recent years, the amount of research has particularly increased in the area of AI/machine learning for the identification of glomeruli, for histological segmentation, and for other applications. Deep learning is the form of machine learning that is most often used for such AI approaches to the 'big data' of pathology WSIs, and deep learning methods such as artificial neural networks (ANNs)/convolutional neural networks (CNNs) are utilised. Unsupervised and supervised AI algorithms can be employed to accomplish image or semantic classification. In this review, AI and other IA algorithms applied to WSIs are discussed, and examples from renal pathology are covered, with an emphasis on renal transplant pathology.


Asunto(s)
Aloinjertos/patología , Inteligencia Artificial , Trasplante de Riñón , Riñón/patología , Humanos , Procesamiento de Imagen Asistido por Computador , Enfermedades Renales/patología , Enfermedades Renales/cirugía , Aprendizaje Automático
10.
Proc Natl Acad Sci U S A ; 115(13): E2970-E2979, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29531073

RESUMEN

Cancer histology reflects underlying molecular processes and disease progression and contains rich phenotypic information that is predictive of patient outcomes. In this study, we show a computational approach for learning patient outcomes from digital pathology images using deep learning to combine the power of adaptive machine learning algorithms with traditional survival models. We illustrate how these survival convolutional neural networks (SCNNs) can integrate information from both histology images and genomic biomarkers into a single unified framework to predict time-to-event outcomes and show prediction accuracy that surpasses the current clinical paradigm for predicting the overall survival of patients diagnosed with glioma. We use statistical sampling techniques to address challenges in learning survival from histology images, including tumor heterogeneity and the need for large training cohorts. We also provide insights into the prediction mechanisms of SCNNs, using heat map visualization to show that SCNNs recognize important structures, like microvascular proliferation, that are related to prognosis and that are used by pathologists in grading. These results highlight the emerging role of deep learning in precision medicine and suggest an expanding utility for computational analysis of histology in the future practice of pathology.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Genómica/métodos , Glioma/genética , Glioma/patología , Técnicas Histológicas/métodos , Redes Neurales de la Computación , Algoritmos , Neoplasias Encefálicas/terapia , Glioma/terapia , Humanos , Procesamiento de Imagen Asistido por Computador , Medicina de Precisión , Pronóstico
11.
Lab Invest ; 100(1): 98-109, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31570774

RESUMEN

Bone marrow aspirate (BMA) differential cell counts (DCCs) are critical for the classification of hematologic disorders. While manual counts are considered the gold standard, they are labor intensive, time consuming, and subject to bias. A reliable automated counter has yet to be developed, largely due to the inherent complexity of bone marrow specimens. Digital pathology imaging coupled with machine learning algorithms represents a highly promising emerging technology for this purpose. Yet, training datasets for BMA cellular constituents, critical for building and validating machine learning algorithms, are lacking. Herein, we report our experience creating and employing such datasets to develop a machine learning algorithm to detect and classify BMA cells. Utilizing a web-based system that we developed for annotating and managing digital pathology images, over 10,000 cells from scanned whole slide images of BMA smears were manually annotated, including all classes that comprise the standard clinical DCC. We implemented a two-stage, detection and classification approach that allows design flexibility and improved classification accuracy. In a sixfold cross-validation, our algorithms achieved high overall accuracy in detection (0.959 ± 0.008 precision-recall AUC) and classification (0.982 ± 0.03 ROC AUC) using nonneoplastic samples. Testing on a small set of acute myeloid leukemia and multiple myeloma samples demonstrated similar detection and classification performance. In summary, our algorithms showed promising early results and represent an important initial step in the effort to devise a reliable, objective method to automate DCCs. With further development to include formal clinical validation, such a system has the potential to assist in disease diagnosis and prognosis, and significantly impact clinical practice.


Asunto(s)
Células de la Médula Ósea , Aprendizaje Automático , Patología/métodos , Recuento de Células , Conjuntos de Datos como Asunto , Humanos
12.
Bioinformatics ; 35(18): 3461-3467, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30726865

RESUMEN

MOTIVATION: While deep-learning algorithms have demonstrated outstanding performance in semantic image segmentation tasks, large annotation datasets are needed to create accurate models. Annotation of histology images is challenging due to the effort and experience required to carefully delineate tissue structures, and difficulties related to sharing and markup of whole-slide images. RESULTS: We recruited 25 participants, ranging in experience from senior pathologists to medical students, to delineate tissue regions in 151 breast cancer slides using the Digital Slide Archive. Inter-participant discordance was systematically evaluated, revealing low discordance for tumor and stroma, and higher discordance for more subjectively defined or rare tissue classes. Feedback provided by senior participants enabled the generation and curation of 20 000+ annotated tissue regions. Fully convolutional networks trained using these annotations were highly accurate (mean AUC=0.945), and the scale of annotation data provided notable improvements in image classification accuracy. AVAILABILITY AND IMPLEMENTATION: Dataset is freely available at: https://goo.gl/cNM4EL. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Neoplasias de la Mama , Colaboración de las Masas , Algoritmos , Técnicas Histológicas , Humanos
13.
J Transl Med ; 18(1): 334, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32873298

RESUMEN

BACKGROUND: African American women experience a twofold higher incidence of triple-negative breast cancer (TNBC) and are 40% more likely to die from breast cancer than women of other ethnicities. However, the molecular bases for the survival disparity in breast cancer remain unclear, and no race-specific therapeutic targets have been proposed. To address this knowledge gap, we performed a systematic analysis of the relationship between gene mRNA expression and clinical outcomes determined for The Cancer Genome Atlas (TCGA) breast cancer patient cohort. METHODS: The systematic differential analysis of mRNA expression integrated with the analysis of clinical outcomes was performed for 1055 samples from the breast invasive carcinoma TCGA PanCancer cohorts. A deep learning fully-convolutional model was used to determine the association between gene expression and tumor features based on breast cancer patient histopathological images. RESULTS: We found that more than 30% of all protein-coding genes are differentially expressed in White and African American breast cancer patients. We have determined a set of 32 genes whose overexpression in African American patients strongly correlates with decreased survival of African American but not White breast cancer patients. Among those genes, the overexpression of mitogen-activated protein kinase kinase 3 (MKK3) has one of the most dramatic and race-specific negative impacts on the survival of African American patients, specifically with triple-negative breast cancer. We found that MKK3 can promote the TNBC tumorigenesis in African American patients in part by activating of the epithelial-to-mesenchymal transition induced by master regulator MYC. CONCLUSIONS: The poor clinical outcomes in African American women with breast cancer can be associated with the abnormal elevation of individual gene expression. Such genes, including those identified and prioritized in this study, could represent new targets for therapeutic intervention. A strong correlation between MKK3 overexpression, activation of its binding partner and major oncogene MYC, and worsened clinical outcomes suggests the MKK3-MYC protein-protein interaction as a new promising target to reduce racial disparity in breast cancer survival.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Negro o Afroamericano/genética , Neoplasias de la Mama/genética , Transformación Celular Neoplásica , Femenino , Humanos , Incidencia , Neoplasias de la Mama Triple Negativas/genética , Población Blanca/genética
14.
Bioinformatics ; 34(7): 1183-1191, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29186335

RESUMEN

Motivation: As cancer genomics initiatives move toward comprehensive identification of genetic alterations in cancer, attention is now turning to understanding how interactions among these genes lead to the acquisition of tumor hallmarks. Emerging pharmacological and clinical data suggest a highly promising role of cancer-specific protein-protein interactions (PPIs) as druggable cancer targets. However, large-scale experimental identification of cancer-related PPIs remains challenging, and currently available resources to explore oncogenic PPI networks are limited. Results: Recently, we have developed a PPI high-throughput screening platform to detect PPIs between cancer-associated proteins in the context of cancer cells. Here, we present the OncoPPi Portal, an interactive web resource that allows investigators to access, manipulate and interpret a high-quality cancer-focused network of PPIs experimentally detected in cancer cell lines. To facilitate prioritization of PPIs for further biological studies, this resource combines network connectivity analysis, mutual exclusivity analysis of genomic alterations, cellular co-localization of interacting proteins and domain-domain interactions. Estimates of PPI essentiality allow users to evaluate the functional impact of PPI disruption on cancer cell proliferation. Furthermore, connecting the OncoPPi network with the approved drugs and compounds in clinical trials enables discovery of new tumor dependencies to inform strategies to interrogate undruggable targets like tumor suppressors. The OncoPPi Portal serves as a resource for the cancer research community to facilitate discovery of cancer targets and therapeutic development. Availability and implementation: The OncoPPi Portal is available at http://oncoppi.emory.edu. Contact: andrey.ivanov@emory.edu or hfu@emory.edu.


Asunto(s)
Nube Computacional , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Mapeo de Interacción de Proteínas/métodos , Humanos , Internet
15.
Magn Reson Med ; 81(5): 3346-3357, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30666698

RESUMEN

PURPOSE: MRSI has shown great promise in the detection and monitoring of neurologic pathologies such as tumor. A necessary component of data processing includes the quantitation of each metabolite, typically done through fitting a model of the spectrum to the data. For high-resolution volumetric MRSI of the brain, which may have ~10,000 spectra, significant processing time is required for spectral analysis and generation of metabolite maps. METHODS: A novel unsupervised deep learning architecture that combines a convolutional neural network with a priori models of the spectrum is presented. This architecture, a convolutional encoder-model decoder (CEMD), combines the strengths of adaptive and unbiased convolutional networks with models of magnetic resonance and is readily interpretable. RESULTS: The CEMD architecture performs accurate spectral fitting for volumetric MRSI in patients with glioblastoma, provides whole-brain fitting in 1 min on a standard computer, and handles a variety of spectral artifacts. CONCLUSION: A new architecture combining physics domain knowledge with convolutional neural networks has been developed and is able to perform rapid spectral fitting of whole-brain data. Rapid processing is a critical step toward routine clinical practice.


Asunto(s)
Mapeo Encefálico/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Imagen Eco-Planar , Glioblastoma/diagnóstico por imagen , Espectroscopía de Resonancia Magnética , Redes Neurales de la Computación , Sustancia Blanca/diagnóstico por imagen , Algoritmos , Artefactos , Ácido Aspártico/análogos & derivados , Ácido Aspártico/farmacología , Colina/farmacología , Gráficos por Computador , Creatina/farmacología , Bases de Datos Factuales , Aprendizaje Profundo , Humanos , Procesamiento de Imagen Asistido por Computador , Modelos Teóricos , Relación Señal-Ruido , Programas Informáticos , Interfaz Usuario-Computador
16.
N Engl J Med ; 372(26): 2481-98, 2015 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-26061751

RESUMEN

BACKGROUND: Diffuse low-grade and intermediate-grade gliomas (which together make up the lower-grade gliomas, World Health Organization grades II and III) have highly variable clinical behavior that is not adequately predicted on the basis of histologic class. Some are indolent; others quickly progress to glioblastoma. The uncertainty is compounded by interobserver variability in histologic diagnosis. Mutations in IDH, TP53, and ATRX and codeletion of chromosome arms 1p and 19q (1p/19q codeletion) have been implicated as clinically relevant markers of lower-grade gliomas. METHODS: We performed genomewide analyses of 293 lower-grade gliomas from adults, incorporating exome sequence, DNA copy number, DNA methylation, messenger RNA expression, microRNA expression, and targeted protein expression. These data were integrated and tested for correlation with clinical outcomes. RESULTS: Unsupervised clustering of mutations and data from RNA, DNA-copy-number, and DNA-methylation platforms uncovered concordant classification of three robust, nonoverlapping, prognostically significant subtypes of lower-grade glioma that were captured more accurately by IDH, 1p/19q, and TP53 status than by histologic class. Patients who had lower-grade gliomas with an IDH mutation and 1p/19q codeletion had the most favorable clinical outcomes. Their gliomas harbored mutations in CIC, FUBP1, NOTCH1, and the TERT promoter. Nearly all lower-grade gliomas with IDH mutations and no 1p/19q codeletion had mutations in TP53 (94%) and ATRX inactivation (86%). The large majority of lower-grade gliomas without an IDH mutation had genomic aberrations and clinical behavior strikingly similar to those found in primary glioblastoma. CONCLUSIONS: The integration of genomewide data from multiple platforms delineated three molecular classes of lower-grade gliomas that were more concordant with IDH, 1p/19q, and TP53 status than with histologic class. Lower-grade gliomas with an IDH mutation either had 1p/19q codeletion or carried a TP53 mutation. Most lower-grade gliomas without an IDH mutation were molecularly and clinically similar to glioblastoma. (Funded by the National Institutes of Health.).


Asunto(s)
ADN de Neoplasias/análisis , Genes p53 , Glioma/genética , Mutación , Adolescente , Adulto , Anciano , Cromosomas Humanos Par 1 , Cromosomas Humanos Par 19 , Análisis por Conglomerados , Femenino , Glioblastoma/genética , Glioma/metabolismo , Glioma/mortalidad , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Modelos de Riesgos Proporcionales , Análisis de Secuencia de ADN , Transducción de Señal
17.
Magn Reson Med ; 80(5): 1765-1775, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29520831

RESUMEN

PURPOSE: Proton MRSI is a noninvasive modality capable of generating volumetric maps of in vivo tissue metabolism without the need for ionizing radiation or injected contrast agent. Magnetic resonance spectroscopic imaging has been shown to be a viable imaging modality for studying several neuropathologies. However, a key hurdle in the routine clinical adoption of MRSI is the presence of spectral artifacts that can arise from a number of sources, possibly leading to false information. METHODS: A deep learning model was developed that was capable of identifying and filtering out poor quality spectra. The core of the model used a tiled convolutional neural network that analyzed frequency-domain spectra to detect artifacts. RESULTS: When compared with a panel of MRS experts, our convolutional neural network achieved high sensitivity and specificity with an area under the curve of 0.95. A visualization scheme was implemented to better understand how the convolutional neural network made its judgement on single-voxel or multivoxel MRSI, and the convolutional neural network was embedded into a pipeline capable of producing whole-brain spectroscopic MRI volumes in real time. CONCLUSION: The fully automated method for assessment of spectral quality provides a valuable tool to support clinical MRSI or spectroscopic MRI studies for use in fields such as adaptive radiation therapy planning.


Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Algoritmos , Artefactos , Encéfalo/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico por imagen , Humanos
18.
Mol Pharmacol ; 91(4): 339-347, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28087810

RESUMEN

The c-Myc (MYC) transcription factor is a major cancer driver and a well-validated therapeutic target. However, directly targeting MYC has been challenging. Thus, identifying proteins that interact with and regulate MYC may provide alternative strategies to inhibit its oncogenic activity. In this study, we report the development of a NanoLuc-based protein-fragment complementation assay (NanoPCA) and mapping of the MYC protein interaction hub in live mammalian cells. The NanoPCA system was configured to enable detection of protein-protein interactions (PPI) at the endogenous level, as shown with PRAS40 dimerization, and detection of weak interactions, such as PINCH1-NCK2. Importantly, NanoPCA allows the study of PPI dynamics with reversible interactions. To demonstrate its utility for large-scale PPI detection in mammalian intracellular environment, we have used NanoPCA to examine MYC interaction with 83 cancer-associated proteins in live cancer cell lines. Our new MYC PPI data confirmed known MYC-interacting proteins, such as MAX, GSK3A, and SMARCA4, and revealed a panel of novel MYC interaction partners, such as RAC-α serine/threonine-protein kinase (AKT)1, liver kinase B (LKB)1, and Yes-associated protein (YAP)1. The MYC interactions with AKT1, LKB1, and YAP1 were confirmed by coimmunoprecipitation of endogenous proteins. Importantly, AKT1, LKB1, and YAP1 were able to activate MYC in a transcriptional reporter assay. Thus, these vital growth control proteins may represent promising MYC regulators, suggesting new mechanisms that couple energetic and metabolic pathways and developmental signaling to MYC-regulated cellular programs.


Asunto(s)
Bioensayo , Luciferasas/metabolismo , Nanopartículas/química , Fosfoproteínas/metabolismo , Mapeo de Interacción de Proteínas/métodos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Línea Celular Tumoral , Células HEK293 , Ensayos Analíticos de Alto Rendimiento , Humanos , Unión Proteica , Reproducibilidad de los Resultados
19.
Lab Invest ; 95(4): 366-76, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25599536

RESUMEN

Technological advances in computing, imaging, and genomics have created new opportunities for exploring relationships between histology, molecular events, and clinical outcomes using quantitative methods. Slide scanning devices are now capable of rapidly producing massive digital image archives that capture histological details in high resolution. Commensurate advances in computing and image analysis algorithms enable mining of archives to extract descriptions of histology, ranging from basic human annotations to automatic and precisely quantitative morphometric characterization of hundreds of millions of cells. These imaging capabilities represent a new dimension in tissue-based studies, and when combined with genomic and clinical endpoints, can be used to explore biologic characteristics of the tumor microenvironment and to discover new morphologic biomarkers of genetic alterations and patient outcomes. In this paper, we review developments in quantitative imaging technology and illustrate how image features can be integrated with clinical and genomic data to investigate fundamental problems in cancer. Using motivating examples from the study of glioblastomas (GBMs), we demonstrate how public data from The Cancer Genome Atlas (TCGA) can serve as an open platform to conduct in silico tissue-based studies that integrate existing data resources. We show how these approaches can be used to explore the relation of the tumor microenvironment to genomic alterations and gene expression patterns and to define nuclear morphometric features that are predictive of genetic alterations and clinical outcomes. Challenges, limitations, and emerging opportunities in the area of quantitative imaging and integrative analyses are also discussed.


Asunto(s)
Técnicas Genéticas , Genómica , Histocitoquímica , Neoplasias , Humanos , Neoplasias/química , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/patología
20.
Neuroradiology ; 57(12): 1227-37, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26337765

RESUMEN

INTRODUCTION: MR imaging can noninvasively visualize tumor phenotype characteristics at the macroscopic level. Here, we investigated whether somatic mutations are associated with and can be predicted by MRI-derived tumor imaging features of glioblastoma (GBM). METHODS: Seventy-six GBM patients were identified from The Cancer Imaging Archive for whom preoperative T1-contrast (T1C) and T2-FLAIR MR images were available. For each tumor, a set of volumetric imaging features and their ratios were measured, including necrosis, contrast enhancing, and edema volumes. Imaging genomics analysis assessed the association of these features with mutation status of nine genes frequently altered in adult GBM. Finally, area under the curve (AUC) analysis was conducted to evaluate the predictive performance of imaging features for mutational status. RESULTS: Our results demonstrate that MR imaging features are strongly associated with mutation status. For example, TP53-mutated tumors had significantly smaller contrast enhancing and necrosis volumes (p = 0.012 and 0.017, respectively) and RB1-mutated tumors had significantly smaller edema volumes (p = 0.015) compared to wild-type tumors. MRI volumetric features were also found to significantly predict mutational status. For example, AUC analysis results indicated that TP53, RB1, NF1, EGFR, and PDGFRA mutations could each be significantly predicted by at least one imaging feature. CONCLUSION: MRI-derived volumetric features are significantly associated with and predictive of several cancer-relevant, drug-targetable DNA mutations in glioblastoma. These results may shed insight into unique growth characteristics of individual tumors at the macroscopic level resulting from molecular events as well as increase the use of noninvasive imaging in personalized medicine.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioblastoma/genética , Glioblastoma/patología , Imagen por Resonancia Magnética/estadística & datos numéricos , Proteínas de Neoplasias/genética , Anciano , Neoplasias Encefálicas/epidemiología , Femenino , Marcadores Genéticos/genética , Predisposición Genética a la Enfermedad/epidemiología , Predisposición Genética a la Enfermedad/genética , Glioblastoma/epidemiología , Humanos , Imagenología Tridimensional/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Mutación/genética , Polimorfismo de Nucleótido Simple/genética , Prevalencia , Reproducibilidad de los Resultados , Factores de Riesgo , Sensibilidad y Especificidad , Estados Unidos/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA