Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Neurosci ; 33(50): 19534-54, 2013 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-24336719

RESUMEN

Adverse early-life experiences, such as poor maternal care, program an abnormal stress response that may involve an altered balance between excitatory and inhibitory signals. Here, we explored how early-life stress (ELS) affects excitatory and inhibitory transmission in corticotrophin-releasing factor (CRF)-expressing dorsal-medial (mpd) neurons of the neonatal mouse hypothalamus. We report that ELS associates with enhanced excitatory glutamatergic transmission that is manifested as an increased frequency of synaptic events and increased extrasynaptic conductance, with the latter associated with dysfunctional astrocytic regulation of glutamate levels. The neurosteroid 5α-pregnan-3α-ol-20-one (5α3α-THPROG) is an endogenous, positive modulator of GABAA receptors (GABAARs) that is abundant during brain development and rises rapidly during acute stress, thereby enhancing inhibition to curtail stress-induced activation of the hypothalamic-pituitary-adrenocortical axis. In control mpd neurons, 5α3α-THPROG potently suppressed neuronal discharge, but this action was greatly compromised by prior ELS exposure. This neurosteroid insensitivity did not primarily result from perturbations of GABAergic inhibition, but rather arose functionally from the increased excitatory drive onto mpd neurons. Previous reports indicated that mice (dams) lacking the GABAAR δ subunit (δ(0/0)) exhibit altered maternal behavior. Intriguingly, δ(0/0) offspring showed some hallmarks of abnormal maternal care that were further exacerbated by ELS. Moreover, in common with ELS, mpd neurons of δ(0/0) pups exhibited increased synaptic and extrasynaptic glutamatergic transmission and consequently a blunted neurosteroid suppression of neuronal firing. This study reveals that increased synaptic and tonic glutamatergic transmission may be a common maladaptation to ELS, leading to enhanced excitation of CRF-releasing neurons, and identifies neurosteroids as putative early regulators of the stress neurocircuitry.


Asunto(s)
Astrocitos/fisiología , Hipotálamo/fisiología , Neurotransmisores/metabolismo , Estrés Psicológico/metabolismo , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Modelos Animales de Enfermedad , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Neurotransmisores/farmacología , Receptores de GABA-A/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Transmisión Sináptica/efectos de los fármacos
2.
J Biol Chem ; 288(44): 31592-601, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24030822

RESUMEN

Structural models of Cys-loop receptors based on homology with the Torpedo marmorata nicotinic acetylcholine receptor infer the existence of cytoplasmic portals within the conduction pathway framed by helical amphipathic regions (termed membrane-associated (MA) helices) of adjacent intracellular M3-M4 loops. Consistent with these models, two arginine residues (Arg(436) and Arg(440)) within the MA helix of 5-hydroxytryptamine type 3A (5-HT3A) receptors act singularly as rate-limiting determinants of single-channel conductance (γ). However, there is little conservation in primary amino acid sequences across the cytoplasmic loops of Cys-loop receptors, limiting confidence in the fidelity of this particular aspect of the 5-HT3A receptor model. We probed the majority of residues within the MA helix of the human 5-HT3A subunit using alanine- and arginine-scanning mutagenesis and the substituted cysteine accessibility method to determine their relative influences upon γ. Numerous residues, prominently those at the 435, 436, 439, and 440 positions, were found to markedly influence γ. This approach yielded a functional map of the 5-HT3A receptor portals, which agrees well with the homology model.


Asunto(s)
Modelos Moleculares , Receptores de Serotonina 5-HT3/química , Receptores de Serotonina 5-HT3/metabolismo , Animales , Línea Celular , Humanos , Mutagénesis Sitio-Dirigida , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores de Serotonina 5-HT3/genética , Homología Estructural de Proteína , Torpedo
3.
J Biol Chem ; 286(18): 16008-17, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21454663

RESUMEN

The determinants of single channel conductance (γ) and ion selectivity within eukaryotic pentameric ligand-gated ion channels have traditionally been ascribed to amino acid residues within the second transmembrane domain and flanking sequences of their component subunits. However, recent evidence suggests that γ is additionally controlled by residues within the intracellular and extracellular domains. We examined the influence of two anionic residues (Asp(113) and Asp(127)) within the extracellular vestibule of a high conductance human mutant 5-hydroxytryptamine type-3A (5-HT(3)A) receptor (5-HT(3)A(QDA)) upon γ, modulation of the latter by extracellular Ca(2+), and the permeability of Ca(2+) with respect to Cs(+) (P(Ca)/P(Cs)). Mutations neutralizing (Asp → Asn), or reversing (Asp → Lys), charge at the 113 locus decreased inward γ by 46 and 58%, respectively, but outward currents were unaffected. The D127N mutation decreased inward γ by 82% and also suppressed outward currents, whereas the D127K mutation caused loss of observable single channel currents. The forgoing mutations, except for D127K, which could not be evaluated, ameliorated suppression of inwardly directed single channel currents by extracellular Ca(2+). The P(Ca)/P(Cs) of 3.8 previously reported for the 5-HT(3)A(QDA) construct was reduced to 0.13 and 0.06 by the D127N and D127K mutations, respectively, with lesser, but clearly significant, effects caused by the D113N (1.04) and D113K (0.60) substitutions. Charge selectivity between monovalent cations and anions (P(Na)/P(Cl)) was unaffected by any of the mutations examined. The data identify two key residues in the extracellular vestibule of the 5-HT(3)A receptor that markedly influence γ, P(Ca)/P(Cs), and additionally the suppression of γ by Ca(2+).


Asunto(s)
Calcio/química , Receptores de Serotonina 5-HT3/química , Sustitución de Aminoácidos , Calcio/metabolismo , Línea Celular , Humanos , Transporte Iónico/fisiología , Mutación Missense , Permeabilidad , Estructura Terciaria de Proteína , Receptores de Serotonina 5-HT3/genética , Receptores de Serotonina 5-HT3/metabolismo
4.
J Physiol ; 588(Pt 4): 587-96, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19933751

RESUMEN

Nicotinic acetylcholine (nACh) and 5-hydroxytryptamine type 3 (5-HT(3)) receptors are cation-selective ion channels of the pentameric ligand-gated ion channel (pLGIC) superfamily. Multiple lines of evidence adduced over the last 30 years indicate that the lining of the channel of such receptors is formed by the alpha-helical second transmembrane (TM2) domain and flanking sequences contributed by each of the five subunits present within the receptor complex. Specific amino acid residues within, and adjacent to, the TM2 domain influence single channel conductance, ion selectivity, and other aspects of receptor function that include gating and desensitization. However, more recent work has revealed important structural determinants of single channel conductance and ion selectivity that are not associated with the TM2 domain. Direct experimental evidence indicates that the intracellular domain of eukaryotic pLGICs, in particular a region of the loop linking TM3 and TM4 termed the membrane-associated (MA) stretch, exerts a strong influence upon ion channel biophysics. Moreover, recent computational approaches, complemented by experimentation, implicate the extracellular domain as an additional important determinant of ion conduction. This brief review describes how our knowledge of ion conduction and selectivity in cation-selective pLGICs has evolved beyond TM2.


Asunto(s)
Activación del Canal Iónico , Receptores de Serotonina 5-HT3/química , Receptores de Serotonina 5-HT3/fisiología , Secuencia de Aminoácidos , Animales , Humanos , Datos de Secuencia Molecular , Conformación Proteica , Receptores Nicotínicos/química , Receptores Nicotínicos/fisiología
5.
Cancer Res ; 64(14): 4875-86, 2004 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-15256458

RESUMEN

The acquisition of resistance to apoptosis, the cell's intrinsic suicide program, is essential for cancers to arise and progress and is a major reason behind treatment failures. We show in this article that small molecule antagonists of the sigma-1 receptor inhibit tumor cell survival to reveal caspase-dependent apoptosis. sigma antagonist-mediated caspase activation and cell death are substantially attenuated by the prototypic sigma-1 agonists (+)-SKF10,047 and (+)-pentazocine. Although several normal cell types such as fibroblasts, epithelial cells, and even sigma receptor-rich neurons are resistant to the apoptotic effects of sigma antagonists, cells that can promote autocrine survival such as lens epithelial and microvascular endothelial cells are as susceptible as tumor cells. Cellular susceptibility appears to correlate with differences in sigma receptor coupling rather than levels of expression. In susceptible cells only, sigma antagonists evoke a rapid rise in cytosolic calcium that is inhibited by sigma-1 agonists. In at least some tumor cells, sigma antagonists cause calcium-dependent activation of phospholipase C and concomitant calcium-independent inhibition of phosphatidylinositol 3'-kinase pathway signaling. Systemic administration of sigma antagonists significantly inhibits the growth of evolving and established hormone-sensitive and hormone-insensitive mammary carcinoma xenografts, orthotopic prostate tumors, and p53-null lung carcinoma xenografts in immunocompromised mice in the absence of side effects. Release of a sigma receptor-mediated brake on apoptosis may offer a new approach to cancer treatment.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Receptores sigma/antagonistas & inhibidores , Animales , Apoptosis/fisiología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Señalización del Calcio/efectos de los fármacos , Carbazoles/farmacología , Caspasas/metabolismo , Bovinos , División Celular/efectos de los fármacos , División Celular/fisiología , Línea Celular Tumoral , Activación Enzimática , Etilenodiaminas/farmacología , Haloperidol/farmacología , Humanos , Isoenzimas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Desnudos , Fosfolipasa C delta , Piperazinas/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt , Fosfolipasas de Tipo C/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Receptor Sigma-1
6.
Psychoneuroendocrinology ; 34 Suppl 1: S48-58, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19758761

RESUMEN

In the mammalian central nervous system activation of the ionotropic GABA(A) receptor by the neurotransmitter GABA plays a crucial role in controlling neuronal excitability. This essential form of neuronal regulation may be subject to "fine tuning" by particular metabolites of progesterone and deoxycorticosterone, which bind directly to the GABA(A) receptor to enhance the actions of GABA. Originally such steroids were considered to act as endocrine messengers, being synthesised in peripheral glands such as the adrenals and ovaries and crossing the blood brain barrier to influence neuronal signalling. However, it is now evident that certain neurons and glia may produce such "neurosteroids" and that these locally synthesised modulators may act in a paracrine, or indeed an autocrine manner to influence neuronal activity. Neurosteroid synthesis may change dynamically in a variety of physiological situations (e.g. stress, pregnancy) and perturbations in their levels are implicated in a variety of neurological and psychiatric disorders. Here we will consider (1) evidence supporting the concept that neurosteroids act as local regulators of neuronal inhibition, (2) that extrasynaptic GABA(A) receptors appear to be a particularly important neurosteroid target and (3) recent advances in defining the neurosteroid binding site(s) on the GABA(A) receptor.


Asunto(s)
Neurotransmisores/fisiología , Receptores de GABA-A/fisiología , Regulación Alostérica/fisiología , Animales , Sitios de Unión/fisiología , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/fisiología , Humanos , Ratones , Modelos Neurológicos , Inhibición Neural/fisiología
7.
J Biol Chem ; 284(4): 2023-30, 2009 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-19049967

RESUMEN

The Cys loop receptor channels mediate fast synaptic transmission in the nervous system. The M2-demarcated transmembrane pore is an important determinant of their ion permeation properties. Portals within the intracellular domain are also part of the permeation pathway in cationic Cys loop receptors, with charged residues in a helical MA stretch partially lining these openings profoundly affecting channel conductance. It is unknown whether analogous portals contribute to the permeation pathway in anionic Cys loop receptors. We therefore investigated the influence of charged residues within the proposed MA stretch on functional properties of the homomeric glycine alpha1 receptor. Up to eight basic residues in the MA stretch were concurrently mutated to a negatively charged glutamate, and wild-type and mutant subunits were expressed in HEK-293 cells. Mutation of all eight residues produced a non-functional receptor. The greatest reduction in conductance at negative membrane potentials (from 92.2+/-2.8 to 60.0+/-2.2 picosiemens) was observed with glutamate present at the 377, 378, 385, and 386 positions (the 4E subunit). Inclusion of additional glutamate residues within this subunit did not decrease conductance further. Neutralizing these residues (the 4A subunit) caused a modest decrease in conductance (80.5+/-2.3 picosiemens). Outward conductance at positive potentials was not markedly affected. Anion to cation selectivity and concentration-response relationships were unaffected by the 4A or 4E mutations. Our results identify basic residues affecting conductance in the glycine receptor, suggesting that portals are part of the extended permeation pathway but that the M2-demarcated channel pore is the dominant determinant of permeation properties in glycine receptors.


Asunto(s)
Receptores de Glicina/metabolismo , Secuencia de Aminoácidos , Animales , Transporte Biológico , Línea Celular , Membrana Celular/metabolismo , Electrofisiología , Humanos , Iones/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Técnicas de Placa-Clamp , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Receptores de Glicina/química , Receptores de Glicina/genética , Alineación de Secuencia
8.
J Biol Chem ; 283(28): 19301-13, 2008 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-18474595

RESUMEN

Cation-selective cysteine (Cys)-loop transmitter-gated ion channels provide an important pathway for Ca2+ entry into neurones. We examined the influence on Ca2+ permeation of amino acids located at intra- and extracellular ends of the conduction pathway of the human 5-hydroxytryptamine type 3A (5-HT3A) receptor. Mutation of cytoplasmic arginine residues 432, 436, and 440 to glutamine, aspartate, and alanine (the aligned residues of the human 5-HT3B subunit (yielding 5-HT3A(QDA)) increased PCa/PCs from 1.4 to 3.7. The effect was attributable to the removal of an electrostatic influence of the Arg-436 residue. Despite its relatively high permeability to Ca2+, the single channel conductance of the 5-HT3A(QDA) receptor was depressed in a concentration-dependent and voltage-independent manner by extracellular Ca2+. A conserved aspartate, located toward the extracellular end of the conduction pathway and known to influence ionic selectivity, contributed to the inhibitory effect of Ca2+ on macroscopic currents mediated by 5-HT3A receptors. We introduced a D293A mutation into the 5-HT3A(QDA) receptor (yielding the 5-HT3A(QDA D293A) construct) to determine whether the aspartate is required for the suppression of single channel conductance by Ca2+. The D293A mutation decreased the PCa/PCs ratio to 0.25 and reduced inwardly directed single channel conductance from 41 to 30 pS but did not prevent suppression of single channel conductance by Ca2+. The D293A mutation also reduced PCa/PCs when engineered into the wild-type 5-HT3A receptor. The data helped to identify key residues in the cytoplasmic domain (Arg-436) and extracellular vestibule (Asp-293) that markedly influence PCa/PCs and additionally directly demonstrated a depression of single channel conductance by Ca2+.


Asunto(s)
Calcio/metabolismo , Permeabilidad de la Membrana Celular/fisiología , Neuronas/metabolismo , Receptores de Serotonina 5-HT3/metabolismo , Sustitución de Aminoácidos , Línea Celular , Humanos , Activación del Canal Iónico/fisiología , Mutación , Estructura Terciaria de Proteína/fisiología , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Receptores de Serotonina 5-HT3/genética
9.
J Biol Chem ; 282(9): 6172-82, 2007 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-17200121

RESUMEN

Structural models suggest that Arg(436) lies within five cytoplasmic portals of the 5-HT(3A) receptor. We tested both the accessibility of residue 436 and the influence of its charge on single channel conductance (gamma) by substituting Arg(436) with Cys and examining the effect of methanethiosulfonate (MTS) reagents on gamma. Inclusion of positively charged 2-aminoethyl-MTS (MTSEA) within the electrode solution reduced gamma of 5-HT(3A)(R436C) receptors in outside-out patches from 7.8 +/- 0.5 to 5.0 +/- 0.5 picosiemens (pS). To increase gamma, we substituted Arg(436) by Cys in the 5-HT(3A)(R432Q,R440A) mutant, yielding the 5-HT(3A)(QCA) construct with a gamma of 17.7 +/- 0.4 pS. Modification of 5-HT(3A)(QCA) receptors by MTSEA or 2-(trimethylammonium) ethyl-MTS reduced gamma to 8.7 +/- 0.5 and 6.7 +/- 0.4 pS, respectively, both significantly below that of channels exposed to nonpolar propyl-MTS. Extracellular MTSEA, but not 2-(trimethylammonium) ethyl-MTS, crossed the membrane and in so doing slowly (tau = 94 s) reduced gamma. MTSEA more rapidly (tau = 15 s) reduced the gamma of 5-HT(3A)(QCA) receptors in inside-out patches, an effect reversed by the reducing agent dithiothreitol. Cys(436) modification by negatively charged 2-carboxyethyl-MTS and 2-sulfonatoethyl-MTS increasedgamma to 23 +/- 1.0 and 26 +/- 0.7 pS, respectively. MTS reagents did not affect gamma values for 5-HT(3A)(QDA) constructs with Cys substituted for Lys(431) predicted to be outside the entrance to the portals. Collectively, the data demonstrate that the dynamic modification of the charge of a cytoplasmic residue regulates gamma, consistent with the existence of cytoplasmic portals that impose a rate-limiting barrier to ion conduction in Cys loop receptors.


Asunto(s)
Cisteína , Electrofisiología , Receptores de Serotonina 5-HT3/metabolismo , Sustitución de Aminoácidos , Arginina , Transporte Biológico , Citoplasma , Humanos , Mesilatos/farmacología , Mutación , Receptores de Serotonina 5-HT3/genética , Receptores de Serotonina 5-HT3/fisiología , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA