RESUMEN
Stress granules (SGs) are cytoplasmic assemblies of proteins and non-translating mRNAs. Whereas much has been learned about SG formation, a major gap remains in understanding the compositional changes SGs undergo during normal disassembly and under disease conditions. Here, we address this gap by proteomic dissection of the SG temporal disassembly sequence using multi-bait APEX proximity proteomics. We discover 109 novel SG proteins and characterize distinct SG substructures. We reveal dozens of disassembly-engaged proteins (DEPs), some of which play functional roles in SG disassembly, including small ubiquitin-like modifier (SUMO) conjugating enzymes. We further demonstrate that SUMOylation regulates SG disassembly and SG formation. Parallel proteomics with amyotrophic lateral sclerosis (ALS)-associated C9ORF72 dipeptides uncovered attenuated DEP recruitment during SG disassembly and impaired SUMOylation. Accordingly, SUMO activity ameliorated C9ORF72-ALS-related neurodegeneration in Drosophila. By dissecting the SG spatiotemporal proteomic landscape, we provide an in-depth resource for future work on SG function and reveal basic and disease-relevant mechanisms of SG disassembly.
Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteína C9orf72/metabolismo , Gránulos Citoplasmáticos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Proteína C9orf72/genética , Línea Celular Tumoral , Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/patología , Dipéptidos/genética , Dipéptidos/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Humanos , Ratones , Proteómica , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genéticaRESUMEN
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disorder. The only established epidemiological risk factors for ALS are male sex and increasing age. The role of physical activity has been debated as an environmental risk factor. Over the last decade multiple studies have attempted to delineate the architecture of ALS. These have not yet established definite risk factors, often due to low-powered studies, lack of focus on at-risk genotypes and sub-optimal methodology. We have conducted a review of all the studies published between 2009 and December 2021. The free text search terms were [(motor neuron disease) OR (MND) OR (Amyotrophic Lateral Sclerosis) OR (ALS)] AND [(Exercise) or (Physical Activity) or (PA) or (sport)]. We identified common themes, for example soccer, head injury and the physiological mechanisms that differ in ALS patients. We have analysed the relevant, available studies (n = 93), highlighting the underlying reasons for any reported discrepancies. Overall, we have found that the more highly powered studies using validated exposure methodologies, linked strenuous, anaerobic physical activity as a risk factor for ALS. Future large-scale studies focusing on specific at-risk genotypes and physical activity should be conducted to confirm this finding. This will strengthen the evidence already surrounding strenuous physical activity as an environmental risk factor for ALS and allow advice to be given to at-risk family members. Increasing our understanding of the genetic-environmental interactions in the pathophysiology of ALS will allow for the possibility of developing preventative therapeutic approaches.
Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedad de la Neurona Motora , Humanos , Masculino , Femenino , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Enfermedad de la Neurona Motora/tratamiento farmacológico , Ejercicio Físico , Factores de RiesgoRESUMEN
Amyotrophic lateral sclerosis is a relatively common and rapidly progressive neurodegenerative disease that, in the majority of cases, is thought to be determined by a complex gene-environment interaction. Exponential growth in the number of performed genome-wide association studies combined with the advent of Mendelian randomization is opening significant new opportunities to identify environmental exposures that increase or decrease the risk of amyotrophic lateral sclerosis. Each of these discoveries has the potential to shape new therapeutic interventions. However, to do so, rigorous methodological standards must be applied in the performance of Mendelian randomization. We have reviewed Mendelian randomization studies performed in amyotrophic lateral sclerosis to date. We identified 20 Mendelian randomization studies, including evaluation of physical exercise, adiposity, cognitive performance, immune function, blood lipids, sleep behaviours, educational attainment, alcohol consumption, smoking and type 2 diabetes mellitus. We have evaluated each study using gold standard methodology supported by the Mendelian randomization literature and the STROBE-Mendelian randomization checklist. Where discrepancies exist between Mendelian randomization studies, we suggest the underlying reasons. A number of studies conclude that there is a causal link between blood lipids and risk of amyotrophic lateral sclerosis; replication across different datasets and even different populations adds confidence. For other putative risk factors, such as smoking and immune function, Mendelian randomization studies have provided cause for doubt. We highlight the use of positive control analyses in choosing exposure single nucleotide polymorphisms (SNPs) to make up the Mendelian randomization instrument, use of SNP clumping to avoid false positive results due to SNPs in linkage and the importance of multiple testing correction. We discuss the implications of survival bias for study of late age of onset diseases such as amyotrophic lateral sclerosis and make recommendations to mitigate this potentially important confounder. For Mendelian randomization to be useful to the amyotrophic lateral sclerosis field, high methodological standards must be applied to ensure reproducibility. Mendelian randomization is already an impactful tool, but poor-quality studies will lead to incorrect interpretations by a field that includes non-statisticians, wasted resources and missed opportunities.
Asunto(s)
Esclerosis Amiotrófica Lateral , Diabetes Mellitus Tipo 2 , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Lípidos , Análisis de la Aleatorización Mendeliana/métodos , Reproducibilidad de los ResultadosRESUMEN
PURPOSE OF REVIEW: Amyotrophic lateral sclerosis (ALS) is an archetypal complex disease wherein disease risk and severity are, for the majority of patients, the product of interaction between multiple genetic and environmental factors. We are in a period of unprecedented discovery with new large-scale genome-wide association study (GWAS) and accelerating discovery of risk genes. However, much of the observed heritability of ALS is undiscovered and we are not yet approaching elucidation of the total genetic architecture, which will be necessary for comprehensive disease subclassification. RECENT FINDINGS: We summarize recent developments and discuss the future. New machine learning models will help to address nonlinear genetic interactions. Statistical power for genetic discovery may be boosted by reducing the search-space using cell-specific epigenetic profiles and expanding our scope to include genetically correlated phenotypes. Structural variation, somatic heterogeneity and consideration of environmental modifiers represent significant challenges which will require integration of multiple technologies and a multidisciplinary approach, including clinicians, geneticists and pathologists. SUMMARY: The move away from fully penetrant Mendelian risk genes necessitates new experimental designs and new standards for validation. The challenges are significant, but the potential reward for successful disease subclassification is large-scale and effective personalized medicine.
Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/genética , Estudio de Asociación del Genoma Completo , Humanos , Aprendizaje Automático , FenotipoRESUMEN
BACKGROUND: Much progress has been made in mapping genetic abnormalities linked to amyotrophic lateral sclerosis (ALS), but the majority of cases still present with no known underlying cause. Furthermore, even in families with a shared genetic abnormality there is significant phenotypic variability, suggesting that non-genetic elements may modify pathogenesis. Identification of such disease-modifiers is important as they might represent new therapeutic targets. A growing body of research has begun to shed light on the role played by the gut microbiome in health and disease with a number of studies linking abnormalities to ALS. MAIN BODY: The microbiome refers to the genes belonging to the myriad different microorganisms that live within and upon us, collectively known as the microbiota. Most of these microbes are found in the intestines, where they play important roles in digestion and the generation of key metabolites including neurotransmitters. The gut microbiota is an important aspect of the environment in which our bodies operate and inter-individual differences may be key to explaining the different disease outcomes seen in ALS. Work has begun to investigate animal models of the disease, and the gut microbiomes of people living with ALS, revealing changes in the microbial communities of these groups. The current body of knowledge will be summarised in this review. Advances in microbiome sequencing methods will be highlighted, as their improved resolution now enables researchers to further explore differences at a functional level. Proposed mechanisms connecting the gut microbiome to neurodegeneration will also be considered, including direct effects via metabolites released into the host circulation and indirect effects on bioavailability of nutrients and even medications. CONCLUSION: Profiling of the gut microbiome has the potential to add an environmental component to rapidly advancing studies of ALS genetics and move research a step further towards personalised medicine for this disease. Moreover, should compelling evidence of upstream neurotoxicity or neuroprotection initiated by gut microbiota emerge, modification of the microbiome will represent a potential new avenue for disease modifying therapies. For an intractable condition with few current therapeutic options, further research into the ALS microbiome is of crucial importance.
Asunto(s)
Esclerosis Amiotrófica Lateral/microbiología , Esclerosis Amiotrófica Lateral/fisiopatología , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/fisiopatología , Animales , Progresión de la Enfermedad , Humanos , Intestinos/microbiología , Intestinos/fisiopatología , Microbiota , Modelos Animales , Superóxido Dismutasa/metabolismoRESUMEN
OBJECTIVE: The clinical utility of routine genetic sequencing in amyotrophic lateral sclerosis (ALS) is uncertain. Our aim was to determine whether routine targeted sequencing of 44 ALS-relevant genes would have a significant impact on disease subclassification and clinical care. METHODS: We performed targeted sequencing of a 44-gene panel in a prospective case series of 100 patients with ALS recruited consecutively from the Sheffield Motor Neuron Disorders Clinic, UK. All participants were diagnosed with ALS by a specialist Consultant Neurologist. 7/100 patients had familial ALS, but the majority were apparently sporadic cases. RESULTS: 21% of patients with ALS carried a confirmed pathogenic or likely pathogenic mutation, of whom 93% had no family history of ALS. 15% met the inclusion criteria for a current ALS genetic-therapy trial. 5/21 patients with a pathogenic mutation had an additional variant of uncertain significance (VUS). An additional 21% of patients with ALS carried a VUS in an ALS-associated gene. Overall, 13% of patients carried more than one genetic variant (pathogenic or VUS). Patients with ALS carrying two variants developed disease at a significantly earlier age compared with patients with a single variant (median age of onset=56 vs 60 years, p=0.0074). CONCLUSIONS: Routine screening for ALS-associated pathogenic mutations in a specialised ALS referral clinic will impact clinical care in 21% of cases. An additional 21% of patients have variants in the ALS gene panel currently of unconfirmed significance after removing non-specific or predicted benign variants. Overall, variants within known ALS-linked genes are of potential clinical importance in 42% of patients.
Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Pruebas Genéticas , Mutación , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto JovenRESUMEN
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease. The majority of cases are sporadic (sALS), while the most common inherited form is due to C9orf72 mutation (C9ALS). A high burden of inclusion pathology is seen in glia (including oligodendrocytes) in ALS, especially in C9ALS. Myelin basic protein (MBP) messenger RNA (mRNA) must be transported to oligodendrocyte processes for myelination, a possible vulnerability for normal function. TDP43 is found in pathological inclusions in ALS and is a component of mRNA transport granules. Thus, TDP43 aggregation could lead to MBP loss. Additionally, the hexanucleotide expansion of mutant C9ALS binds hnRNPA2/B1, a protein essential for mRNA transport, causing potential further impairment of hnRNPA2/B1 function, and thus myelination. Using immunohistochemistry for p62 and TDP43 in human post-mortem tissue, we found a high burden of glial inclusions in the prefrontal cortex, precentral gyrus, and spinal cord in ALS, which was greater in C9ALS than in sALS cases. Double staining demonstrated that the majority of these inclusions were in oligodendrocytes. Using immunoblotting, we demonstrated reduced MBP protein levels relative to PLP (a myelin component that relies on protein not mRNA transport) and neurofilament protein (an axonal marker) in the spinal cord. This MBP loss was disproportionate to the level of PLP and axonal loss, suggesting that impaired mRNA transport may be partly responsible. Finally, we show that in C9ALS cases, the level of oligodendroglial inclusions correlates inversely with levels of hnRNPA2/B1 and the number of oligodendrocyte precursor cells. We conclude that there is considerable oligodendrocyte pathology in ALS, which at least partially reflects impairment of mRNA transport. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Axones/patología , Oligodendroglía/patología , Tractos Piramidales/patología , Sustancia Blanca/patología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Autopsia , Axones/química , Biomarcadores/análisis , Proteína C9orf72/genética , Estudios de Casos y Controles , Proteínas de Unión al ADN/análisis , Predisposición Genética a la Enfermedad , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/análisis , Humanos , Mutación , Proteína Básica de Mielina/análisis , Oligodendroglía/química , Fenotipo , Tractos Piramidales/química , Transporte de ARN , ARN Mensajero/metabolismo , Proteína Sequestosoma-1/análisis , Factores de Transcripción/análisis , Sustancia Blanca/químicaRESUMEN
Glycosyltransferases represent a large family of enzymes that catalyse the biosynthesis of oligosaccharides, polysaccharides, and glycoconjugates. A number of studies have implicated glycosyltransferases in the pathogenesis of neurodegenerative diseases but differentiating cause from effect has been difficult. We have recently discovered that mutations proximal to the substrate binding site of glycosyltransferase 8 domain containing 1 (GLT8D1) are associated with familial amyotrophic lateral sclerosis (ALS). We demonstrated that ALS-associated mutations reduce activity of the enzyme suggesting a loss-of-function mechanism that is an attractive therapeutic target. Our work is the first evidence that isolated dysfunction of a glycosyltransferase is sufficient to cause a neurodegenerative disease, but connection between neurodegeneration and genetic variation within glycosyltransferases is not new. Previous studies have identified associations between mutations in UGT8 and sporadic ALS, and between ST6GAL1 mutations and conversion of mild cognitive impairment into clinical Alzheimer's disease. In this review we consider potential mechanisms connecting glycosyltransferase dysfunction to neurodegeneration. The most prominent candidates are ganglioside synthesis and impaired addition of O-linked ß-N-acetylglucosamine (O-GlcNAc) groups to proteins important for axonal and synaptic function. Special consideration is given to examples where genetic mutations within glycosyltransferases are associated with neurodegeneration in recognition of the fact that these changes are likely to be upstream causes present from birth.
Asunto(s)
Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Metabolismo de los Lípidos/fisiología , Degeneración Nerviosa/enzimología , Proteínas/metabolismo , Animales , Glicosilación , Humanos , Lípidos , MutaciónRESUMEN
BACKGROUND: Large-scale human sequencing projects have described around a hundred-million single nucleotide variants (SNVs). These studies have predominately involved individuals with European ancestry despite the fact that genetic diversity is expected to be highest in Africa where Homo sapiens evolved and has maintained a large population for the longest time. The African Genome Variation Project examined several African populations but these were all located south of the Sahara. Morocco is on the northwest coast of Africa and mostly lies north of the Sahara, which makes it very attractive for studying genetic diversity. The ancestry of present-day Moroccans is unknown and may be substantially different from Africans found South of the Sahara desert, Recent genomic data of Taforalt individuals in Eastern Morocco revealed 15,000-year-old modern humans and suggested that North African individuals may be genetically distinct from previously studied African populations. RESULTS: We present SNVs discovered by whole genome sequencing (WGS) of three Moroccans. From a total of 5.9 million SNVs detected, over 200,000 were not identified by 1000G and were not in the extensive gnomAD database. We summarise the SNVs by genomic position, type of sequence gene context and effect on proteins encoded by the sequence. Analysis of the overall genomic information of the Moroccan individuals to individuals from 1000G supports the Moroccan population being distinct from both sub-Saharan African and European populations. CONCLUSIONS: We conclude that Moroccan samples are genetically distinct and lie in the middle of the previously observed cline between populations of European and African ancestry. WGS of Moroccan individuals can identify a large number of novel SNVs and aid in functional characterisation of the genome.
Asunto(s)
Genética de Población , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma , Genoma Humano , Humanos , MarruecosRESUMEN
White matter lesions (WML) are a common feature of the ageing brain associated with cognitive impairment. The gene expression profiles of periventricular lesions (PVL, n = 7) and radiologically-normal-appearing (control) periventricular white matter cases (n = 11) obtained from the Cognitive Function and Ageing Study (CFAS) neuropathology cohort were interrogated using microarray analysis and NanoString to identify novel mechanisms potentially underlying their formation. Histological characterisation of control white matter cases identified a subgroup (n = 4) which contained high levels of MHC-II immunoreactive microglia, and were classified as "pre-lesional." Microarray analysis identified 2256 significantly differentially-expressed genes (p ≤ 0.05, FC ≥ 1.2) in PVL compared to non-lesional control white matter (1378 upregulated and 878 downregulated); 2649 significantly differentially-expressed genes in "pre-lesional" cases compared to PVL (1390 upregulated and 1259 downregulated); and 2398 significantly differentially-expressed genes in "pre-lesional" versus non-lesional control cases (1527 upregulated and 871 downregulated). Whilst histological evaluation of a single marker (MHC-II) implicates immune-activated microglia in lesion pathology, transcriptomic analysis indicates significant downregulation of a number of activated microglial markers and suggests established PVL are part of a continuous spectrum of white matter injury. The gene expression profile of "pre-lesional" periventricular white matter suggests upregulation of several signalling pathways may be a neuroprotective response to prevent the pathogenesis of PVL.
Asunto(s)
Envejecimiento/genética , Ventrículos Cerebrales/metabolismo , Perfilación de la Expresión Génica/métodos , Inmunidad/genética , Transcriptoma/genética , Sustancia Blanca/metabolismo , Factores de Edad , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Humanos , Masculino , Microglía/metabolismo , Transducción de Señal/genéticaRESUMEN
Amyotrophic lateral sclerosis (ALS) is a devastating and incurable neurodegenerative disease, characterised by progressive failure of the neuromuscular system. A (G4C2)n repeat expansion in C9ORF72 is the most common genetic cause of ALS and frontotemporal dementia (FTD). To date, the balance of evidence indicates that the (G4C2)n repeat causes toxicity and neurodegeneration via a gain-of-toxic function mechanism; either through direct RNA toxicity or through the production of toxic aggregating dipeptide repeat proteins. Here, we have generated a stable and isogenic motor neuronal NSC34 cell model with inducible expression of a (G4C2)102 repeat, to investigate the gain-of-toxic function mechanisms. The expression of the (G4C2)102 repeat produces RNA foci and also undergoes RAN translation. In addition, the expression of the (G4C2)102 repeat shows cellular toxicity. Through comparison of transcriptomic data from the cellular model with laser-captured spinal motor neurons from C9ORF72-ALS cases, we also demonstrate that the PI3K/Akt cell survival signalling pathway is dysregulated in both systems. Furthermore, partial knockdown of Pten rescues the toxicity observed in the NSC34 (G4C2)102 cellular gain-of-toxic function model of C9ORF72-ALS. Our data indicate that PTEN may provide a potential therapeutic target to ameliorate toxic effects of the (G4C2)n repeat.
Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Expansión de las Repeticiones de ADN/genética , Demencia Frontotemporal/genética , Fosfohidrolasa PTEN/genética , Proteínas/genética , Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72 , Línea Celular , Supervivencia Celular , Demencia Frontotemporal/patología , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , ARN/genéticaRESUMEN
Functional and structural age-associated changes in the blood-brain barrier (BBB) may affect the neurovascular unit and contribute to the onset and progression of age-associated neurodegenerative pathologies, including Alzheimer's disease. The current study interrogated the RNA profile of the BBB in an ageing human autopsy brain cohort and an ageing mouse model using combined laser capture microdissection and expression profiling. Only 12 overlapping genes were altered in the same direction in the BBB of both ageing human and mouse cohorts. These included genes with roles in regulating vascular tone, tight junction protein expression and cell adhesion, all processes prone to dysregulation with advancing age. Integrated mRNA and miRNA network and pathway enrichment analysis of the datasets identified 15 overlapping miRNAs that showed altered expression. In addition to targeting genes related to DNA binding and/or autophagy, many of the miRNAs identified play a role in age-relevant processes, including BBB dysfunction and regulating the neuroinflammatory response. Future studies have the potential to develop targeted therapeutic approaches against these candidates to prevent vascular dysfunction in the ageing brain.
Asunto(s)
Barrera Hematoencefálica/metabolismo , Regulación de la Expresión Génica , MicroARNs/genética , Interferencia de ARN , ARN Mensajero/genética , Factores de Edad , Animales , Apoptosis/genética , Autofagia/genética , Barrera Hematoencefálica/patología , Biología Computacional/métodos , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Ratones , TranscriptomaRESUMEN
BACKGROUND: Intermediate-length cytosine-adenine-guanine repeat expansions in the ATXN2 gene (which encodes for Ataxin-2 protein) have been linked to increased risk for motor neurone disease/amyotrophic lateral sclerosis (ALS). We screened DNA from cases for which we had post-mortem brain tissue to enable characterization of the neuropathology associated with this mutation. METHODS: Polymerase chain reaction and sequencing of DNA from frozen brain tissue on a cohort of 178 amyotrophic lateral sclerosis (ALS) autopsy cases from the north of England and 159 controls was performed. This was followed by tinctorial staining and immunohistochemistry (including for Ataxin-2) on selected blocks from ALS cases with intermediate-length expansions (ATXN2-ALS), sporadic ALS cases and neurologically healthy controls. RESULTS: Four ALS cases with intermediate-length CAG repeat expansions within ATXN2 were identified. One such case also had a mutation of the C9ORF72 gene. All had lower motor neurone depletion, and three out of four cases had transactive response DNA binding protein 43 (TDP-43)-positive neuronal cytoplasmic inclusions (predominantly skein-like). No inclusions of aggregated polyglutamine proteins were identified. Ataxin-2 protein expression was largely granular and cytoplasmic with the most prominent staining observed in larger neurones. Ataxin-2 staining was variable both within and between cases, but no staining pattern that was specific for cases with ATXN2 mutations was seen. CONCLUSIONS: Intermediate expansions of the CAG repeat in ATXN2 are associated with ALS. They are mostly associated with TDP-43 proteinopathy, but not with 1C2-positive polyglutamine inclusions. In the nervous system, Ataxin-2 protein expression is predominantly seen in large neurones. There is no consistent histopathological hallmark that is unique to ATXN2-ALS.
Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Ataxina-2/genética , Encéfalo/patología , Cuerpos de Inclusión/patología , Expansión de Repetición de Trinucleótido , Anciano , Encéfalo/metabolismo , Femenino , Humanos , Cuerpos de Inclusión/metabolismo , Masculino , Persona de Mediana Edad , Péptidos/metabolismoRESUMEN
Amyotrophic lateral sclerosis (ALS) is characterized by motor neurone loss resulting in muscle weakness, spasticity and ultimately death. 5-10% are caused by inherited mutations, most commonly C9ORF72, SOD1, TARDBP and FUS. Rarer genetic causes of ALS include mutation of optineurin (mt OPTN). Furthermore, optineurin protein has been localized to the ubiquitylated aggregates in several neurodegenerative diseases, including ALS. This study: (i) investigated the frequency of mt OPTN in ALS patients in England; (ii) characterized the clinical and neuropathological features of ALS associated with a mt OPTN; and (iii) investigated optineurin neuropathology in C9ORF72-related ALS (C9ORF72-ALS). We identified a heterozygous p.E322K missense mutation in exon 10 of OPTN in one familial ALS patient who additionally had a C9ORF72 mutation. This patient had bulbar, limb and respiratory disease without cognitive problems. Neuropathology revealed motor neurone loss, trans-activation response DNA protein 43 (TDP-43)-positive neuronal and glial cytoplasmic inclusions together with TDP-43-negative neuronal cytoplasmic inclusions in extra motor regions that are characteristic of C9ORF72-ALS. We have demonstrated that both TDP-43-positive and negative inclusion types had positive staining for optineurin by immunohistochemistry. We went on to show that optineurin was present in TDP-43-negative cytoplasmic extra motor inclusions in C9ORF72-ALS cases that do not carry mt OPTN. We conclude that: (i) OPTN mutations are associated with ALS; (ii) optineurin protein is present in a subset of the extramotor inclusions of C9ORF72-ALS; (iii) It is not uncommon for multiple ALS-causing mutations to occur in the same patient; and (iv) studies of optineurin are likely to provide useful dataregarding the pathophysiology of ALS and neurodegeneration.
Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Proteínas de Unión al ADN/genética , Mutación , Proteínas/genética , Factor de Transcripción TFIIIA/genética , Adulto , Anciano , Anciano de 80 o más Años , Esclerosis Amiotrófica Lateral/metabolismo , Proteína C9orf72 , Proteínas de Ciclo Celular , Análisis Mutacional de ADN , Proteínas de Unión al ADN/metabolismo , Femenino , Humanos , Inmunohistoquímica , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Masculino , Proteínas de Transporte de Membrana , Persona de Mediana Edad , Herencia Multifactorial , Linaje , Fenotipo , Proteínas/metabolismo , Factor de Transcripción TFIIIA/metabolismoRESUMEN
Altered RNA metabolism is a key pathophysiological component causing several neurodegenerative diseases. Genetic mutations causing neurodegeneration occur in coding and noncoding regions of seemingly unrelated genes whose products do not always contribute to the gene expression process. Several pathogenic mechanisms may coexist within a single neuronal cell, including RNA/protein toxic gain-of-function and/or protein loss-of-function. Genetic mutations that cause neurodegenerative disorders disrupt healthy gene expression at diverse levels, from chromatin remodelling, transcription, splicing, through to axonal transport and repeat-associated non-ATG (RAN) translation. We address neurodegeneration in repeat expansion disorders [Huntington's disease, spinocerebellar ataxias, C9ORF72-related amyotrophic lateral sclerosis (ALS)] and in diseases caused by deletions or point mutations (spinal muscular atrophy, most subtypes of familial ALS). Some neurodegenerative disorders exhibit broad dysregulation of gene expression with the synthesis of hundreds to thousands of abnormal messenger RNA (mRNA) molecules. However, the number and identity of aberrant mRNAs that are translated into proteins - and how these lead to neurodegeneration - remain unknown. The field of RNA biology research faces the challenge of identifying pathophysiological events of dysregulated gene expression. In conclusion, we discuss current research limitations and future directions to improve our characterization of pathological mechanisms that trigger disease onset and progression.
Asunto(s)
Enfermedades Neurodegenerativas/genética , ARN/genética , Animales , HumanosRESUMEN
GGGGCC repeat expansions of C9ORF72 represent the most common genetic variant of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. We and others have proposed that RNA transcribed from the repeat sequence is toxic via sequestration of RNA-binding factors. Both GGGGCC-repeat (sense) and CCCCGG-repeat (antisense) molecules are detectable by fluorescence in situ hybridisation as RNA foci, but their relative expression pattern within the CNS and contribution to disease has not been determined. Blinded examination of CNS biosamples from ALS patients with a repeat expansion of C9ORF72 showed that antisense foci are present at a significantly higher frequency in cerebellar Purkinje neurons and motor neurons, whereas sense foci are present at a significantly higher frequency in cerebellar granule neurons. Consistent with this, inclusions containing sense or antisense derived dipeptide repeat proteins were present at significantly higher frequency in cerebellar granule neurons or motor neurons, respectively. Immunohistochemistry and UV-crosslinking studies showed that sense and antisense RNA molecules share similar interactions with SRSF2, hnRNP K, hnRNP A1, ALYREF, and hnRNP H/F. Together these data suggest that, although sense and antisense RNA molecules might be expected to be equally toxic via their shared protein binding partners, distinct patterns of expression in various CNS neuronal populations could lead to relative differences in their contribution to the pathogenesis of neuronal injury. Moreover in motor neurons, which are the primary target of pathology in ALS, the presence of antisense foci (χ (2), p < 0.00001) but not sense foci (χ (2), p = 0.75) correlated with mislocalisation of TDP-43, which is the hallmark of ALS neurodegeneration. This has implications for translational approaches to C9ORF72 disease, and furthermore interacting RNA-processing factors and transcriptional activators responsible for antisense versus sense transcription might represent novel therapeutic targets.
Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/metabolismo , Neuronas Motoras/metabolismo , Proteínas/genética , Proteínas/metabolismo , Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72 , Cerebelo/metabolismo , Cerebelo/patología , Expansión de las Repeticiones de ADN , Femenino , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Cuerpos de Inclusión/genética , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Masculino , Persona de Mediana Edad , Neuronas Motoras/patología , Células de Purkinje/metabolismo , Células de Purkinje/patología , ARN sin SentidoRESUMEN
GGGGCC repeat expansions of C9orf72 represent the most common genetic variant of amyotrophic lateral sclerosis and frontotemporal degeneration, but the mechanism of pathogenesis is unclear. Recent reports have suggested that the transcribed repeat might form toxic RNA foci that sequester various RNA processing proteins. Consensus as to the identity of the binding partners is missing and whole neuronal proteome investigation is needed. Using RNA fluorescence in situ hybridization we first identified nuclear and cytoplasmic RNA foci in peripheral and central nervous system biosamples from patients with amyotrophic lateral sclerosis with a repeat expansion of C9orf72 (C9orf72+), but not from those patients without a repeat expansion of C9orf72 (C9orf72-) or control subjects. Moreover, in the cases examined, the distribution of foci-positive neurons correlated with the clinical phenotype (t-test P < 0.05). As expected, RNA foci are ablated by RNase treatment. Interestingly, we identified foci in fibroblasts from an asymptomatic C9orf72+ carrier. We next performed pulldown assays, with GGGGCC5, in conjunction with mass spectrometry analysis, to identify candidate binding partners of the GGGGCC repeat expansion. Proteins containing RNA recognition motifs and involved in splicing, messenger RNA nuclear export and/or translation were significantly enriched. Immunohistochemistry in central nervous system tissue from C9orf72+ patients with amyotrophic lateral sclerosis demonstrated co-localization of RNA foci with SRSF2, hnRNP H1/F, ALYREF and hnRNP A1 in cerebellar granule cells and with SRSF2, hnRNP H1/F and ALYREF in motor neurons, the primary target of pathology in amyotrophic lateral sclerosis. Direct binding of proteins to GGGGCC repeat RNA was confirmed in vitro by ultraviolet-crosslinking assays. Co-localization was only detected in a small proportion of RNA foci, suggesting dynamic sequestration rather than irreversible binding. Additional immunohistochemistry demonstrated that neurons with and without RNA foci were equally likely to show nuclear depletion of TDP-43 (χ(2) P = 0.75) or poly-GA dipeptide repeat protein inclusions (χ(2) P = 0.46). Our findings suggest two non-exclusive pathogenic mechanisms: (i) functional depletion of RNA-processing proteins resulting in disruption of messenger RNA splicing; and (ii) licensing of expanded C9orf72 pre-messenger RNA for nuclear export by inappropriate association with messenger RNA export adaptor protein(s) leading to cytoplasmic repeat associated non-ATG translation and formation of potentially toxic dipeptide repeat protein.
Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Expansión de las Repeticiones de ADN/genética , Proteínas/genética , Proteínas de Unión al ARN/metabolismo , Adenosina Trifosfato/farmacocinética , Esclerosis Amiotrófica Lateral/patología , Biotinilación , Encéfalo/patología , Proteína C9orf72 , Femenino , Ribonucleoproteína Nuclear Heterogénea A1 , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Humanos , Masculino , Espectrometría de Masas , Neuronas/patología , Proteínas Nucleares/metabolismo , Isótopos de Fósforo/farmacocinética , Unión Proteica/efectos de los fármacos , Proteínas de Unión al ARN/genética , Ribonucleoproteínas/metabolismo , Factores de Empalme Serina-Arginina , Factores de Transcripción/metabolismoRESUMEN
AIMS: Loss of nuclear TDP-43 characterizes sporadic and most familial forms of amyotrophic lateral sclerosis (ALS). TDP-43 (encoded by TARDBP) has multiple roles in RNA processing. We aimed to determine whether (1) RNA splicing dysregulation is present in lower motor neurones in ALS and in a motor neurone-like cell model; and (2) TARDBP mutations (mtTARDBP) are associated with aberrant RNA splicing using patient-derived fibroblasts. METHODS: Affymetrix exon arrays were used to study mRNA expression and splicing in lower motor neurones obtained by laser capture microdissection of autopsy tissue from individuals with sporadic ALS and TDP-43 proteinopathy. Findings were confirmed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and in NSC34 motor neuronal cells following shRNA-mediated TDP-43 depletion. Exon arrays and immunohistochemistry were used to study mRNA splicing and TDP-43 expression in fibroblasts from patients with mtTARDBP-associated, sporadic and mutant SOD1-associated ALS. RESULTS: We found altered expression of spliceosome components in motor neurones and widespread aberrations of mRNA splicing that specifically affected genes involved in ribonucleotide binding. This was confirmed in TDP-43-depleted NSC34 cells. Fibroblasts with mtTARDBP showed loss of nuclear TDP-43 protein and demonstrated similar changes in splicing and gene expression, which were not present in fibroblasts from patients with sporadic or SOD1-related ALS. CONCLUSION: Loss of nuclear TDP-43 is associated with RNA processing abnormalities in ALS motor neurones, patient-derived cells with mtTARDBP, and following artificial TDP-43 depletion, suggesting that splicing dysregulation directly contributes to disease pathogenesis. Key functional pathways affected include those central to RNA metabolism.
Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Neuronas Motoras/metabolismo , Empalme del ARN , Anciano , Animales , Femenino , Expresión Génica , Humanos , Masculino , Ratones , Persona de Mediana Edad , Proteínas Nucleares/genética , Médula Espinal/metabolismoRESUMEN
The GGGGCC (G4C2) repeat expansion in C9ORF72 is the most common cause of familial amyotrophic lateral sclerosis (ALS), frontotemporal lobar dementia (FTLD) and ALS-FTLD, as well as contributing to sporadic forms of these diseases. Screening of large cohorts of ALS and FTLD cohorts has identified that C9ORF72-ALS is represented throughout the clinical spectrum of ALS phenotypes, though in comparison with other genetic subtypes, C9ORF72 carriers have a higher incidence of bulbar onset disease. In contrast, C9ORF72-FTLD is predominantly associated with behavioural variant FTD, which often presents with psychosis, most commonly in the form of hallucinations and delusions. However, C9ORF72 expansions are not restricted to these clinical phenotypes. There is a higher than expected incidence of parkinsonism in ALS patients with C9ORF72 expansions, and the G4C2 repeat has also been reported in other motor phenotypes, such as primary lateral sclerosis, progressive muscular atrophy, corticobasal syndrome and Huntington-like disorders. In addition, the expansion has been identified in non-motor phenotypes including Alzheimer's disease and Lewy body dementia. It is not currently understood what is the basis of the clinical variation seen with the G4C2 repeat expansion. One potential explanation is repeat length. Sizing of the expansion by Southern blotting has established that there is somatic heterogeneity, with different expansion lengths in different tissues, even within the brain. To date, no correlation with expansion size and clinical phenotype has been established in ALS, whilst in FTLD only repeat size in the cerebellum was found to correlate with disease duration. Somatic heterogeneity suggests there is a degree of instability within the repeat and evidence of anticipation has been reported with reducing age of onset in subsequent generations. This variability/instability in expansion length, along with its interactions with environmental and genetic modifiers, such as TMEM106B, may be the basis of the differing clinical phenotypes arising from the mutation.