Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Brain ; 134(Pt 12): 3742-54, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22006979

RESUMEN

Group differences in resting state functional magnetic resonance imaging connectivity between individuals with autism and typically developing controls have been widely replicated for a small number of discrete brain regions, yet the whole-brain distribution of connectivity abnormalities in autism is not well characterized. It is also unclear whether functional connectivity is sufficiently robust to be used as a diagnostic or prognostic metric in individual patients with autism. We obtained pairwise functional connectivity measurements from a lattice of 7266 regions of interest covering the entire grey matter (26.4 million connections) in a well-characterized set of 40 male adolescents and young adults with autism and 40 age-, sex- and IQ-matched typically developing subjects. A single resting state blood oxygen level-dependent scan of 8 min was used for the classification in each subject. A leave-one-out classifier successfully distinguished autism from control subjects with 83% sensitivity and 75% specificity for a total accuracy of 79% (P = 1.1 × 10(-7)). In subjects <20 years of age, the classifier performed at 89% accuracy (P = 5.4 × 10(-7)). In a replication dataset consisting of 21 individuals from six families with both affected and unaffected siblings, the classifier performed at 71% accuracy (91% accuracy for subjects <20 years of age). Classification scores in subjects with autism were significantly correlated with the Social Responsiveness Scale (P = 0.05), verbal IQ (P = 0.02) and the Autism Diagnostic Observation Schedule-Generic's combined social and communication subscores (P = 0.05). An analysis of informative connections demonstrated that region of interest pairs with strongest correlation values were most abnormal in autism. Negatively correlated region of interest pairs showed higher correlation in autism (less anticorrelation), possibly representing weaker inhibitory connections, particularly for long connections (Euclidean distance >10 cm). Brain regions showing greatest differences included regions of the default mode network, superior parietal lobule, fusiform gyrus and anterior insula. Overall, classification accuracy was better for younger subjects, with differences between autism and control subjects diminishing after 19 years of age. Classification scores of unaffected siblings of individuals with autism were more similar to those of the control subjects than to those of the subjects with autism. These findings indicate feasibility of a functional connectivity magnetic resonance imaging diagnostic assay for autism.


Asunto(s)
Trastorno Autístico/clasificación , Encéfalo/fisiopatología , Imagen por Resonancia Magnética , Adolescente , Trastorno Autístico/diagnóstico , Trastorno Autístico/fisiopatología , Mapeo Encefálico , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Vías Nerviosas/fisiopatología , Sensibilidad y Especificidad , Adulto Joven
2.
Cereb Cortex ; 21(5): 1134-46, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-20943668

RESUMEN

The cortical underconnectivity theory asserts that reduced long-range functional connectivity might contribute to a neural mechanism for autism. We examined resting-state blood oxygen level-dependent interhemispheric correlation in 53 males with high-functioning autism and 39 typically developing males from late childhood through early adulthood. By constructing spatial maps of correlation between homologous voxels in each hemisphere, we found significantly reduced interhemispheric correlation specific to regions with functional relevance to autism: sensorimotor cortex, anterior insula, fusiform gyrus, superior temporal gyrus, and superior parietal lobule. Observed interhemispheric connectivity differences were better explained by diagnosis of autism than by potentially confounding neuropsychological metrics of language, IQ, or handedness. Although both corpus callosal volume and gray matter interhemispheric connectivity were significantly reduced in autism, no direct relationship was observed between them, suggesting that structural and functional metrics measure different aspects of interhemispheric connectivity. In the control but not the autism sample, there was decreasing interhemispheric correlation with subject age. Greater differences in interhemispheric correlation were seen for more lateral regions in the brain. These findings suggest that long-range connectivity abnormalities in autism are spatially heterogeneous and that transcallosal connectivity is decreased most in regions with functions associated with behavioral abnormalities in autism. Autism subjects continue to show developmental differences in interhemispheric connectivity into early adulthood.


Asunto(s)
Trastorno Autístico/fisiopatología , Corteza Cerebral/fisiopatología , Cuerpo Calloso/fisiopatología , Vías Nerviosas/fisiopatología , Adolescente , Adulto , Trastorno Autístico/diagnóstico , Trastorno Autístico/patología , Axones/fisiología , Mapeo Encefálico/métodos , Corteza Cerebral/crecimiento & desarrollo , Niño , Cuerpo Calloso/crecimiento & desarrollo , Dominancia Cerebral/fisiología , Lateralidad Funcional/fisiología , Humanos , Masculino , Trastornos Mentales/etiología , Trastornos Mentales/patología , Trastornos Mentales/fisiopatología , Vías Nerviosas/crecimiento & desarrollo
3.
Res Autism Spectr Disord ; 7(2): 221-234, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23130086

RESUMEN

Despite repeated findings of abnormal corpus callosum structure in autism, the developmental trajectories of corpus callosum growth in the disorder have not yet been reported. In this study, we examined corpus callosum size from a developmental perspective across a 30-year age range in a large cross-sectional sample of individuals with autism compared to a typically developing sample. Midsagittal corpus callosum area and the 7 Witelson subregions were examined in 68 males with autism (mean age 14.1 years; range 3-36 years) and 47 males with typical development (mean age 15.3 years; range 4-29 years). Controlling for total brain volume, increased variability in total corpus callosum area was found in autism. In autism, increased midsagittal areas were associated with reduced severity of autism behaviors, higher intelligence, and faster speed of processing (p=0.003, p=0.011, p=0.013, respectively). A trend toward group differences in isthmus development was found (p=0.029, uncorrected). These results suggest that individuals with autism benefit functionally from increased corpus callosum area. Our cross-sectional examination also shows potential maturational abnormalities in autism, a finding that should be examined further with longitudinal datasets.

4.
Behav Sci (Basel) ; 3(3): 348-71, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24761228

RESUMEN

Prior studies have shown that performance on standardized measures of memory in children with autism spectrum disorder (ASD) is substantially reduced in comparison to matched typically developing controls (TDC). Given reported deficits in face processing in autism, the current study compared performance on an immediate and delayed facial memory task for individuals with ASD and TDC. In addition, we examined volumetric differences in classic facial memory regions of interest (ROI) between the two groups, including the fusiform, amygdala, and hippocampus. We then explored the relationship between ROI volume and facial memory performance. We found larger volumes in the autism group in the left amygdala and left hippocampus compared to TDC. In contrast, TDC had larger left fusiform gyrus volumes when compared with ASD. Interestingly, we also found significant negative correlations between delayed facial memory performance and volume of the left and right fusiform and the left hippocampus for the ASD group but not for TDC. The possibility of larger fusiform volume as a marker of abnormal connectivity and decreased facial memory is discussed.

5.
PLoS One ; 7(11): e49172, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23185305

RESUMEN

Autism is a complex neurological condition characterized by childhood onset of dysfunction in multiple cognitive domains including socio-emotional function, speech and language, and processing of internally versus externally directed stimuli. Although gross brain anatomic differences in autism are well established, recent studies investigating regional differences in brain structure and function have yielded divergent and seemingly contradictory results. How regional abnormalities relate to the autistic phenotype remains unclear. We hypothesized that autism exhibits distinct perturbations in network-level brain architecture, and that cognitive dysfunction may be reflected by abnormal network structure. Network-level anatomic abnormalities in autism have not been previously described. We used structural covariance MRI to investigate network-level differences in gray matter structure within two large-scale networks strongly implicated in autism, the salience network and the default mode network, in autistic subjects and age-, gender-, and IQ-matched controls. We report specific perturbations in brain network architecture in the salience and default-mode networks consistent with clinical manifestations of autism. Extent and distribution of the salience network, involved in social-emotional regulation of environmental stimuli, is restricted in autism. In contrast, posterior elements of the default mode network have increased spatial distribution, suggesting a 'posteriorization' of this network. These findings are consistent with a network-based model of autism, and suggest a unifying interpretation of previous work. Moreover, we provide evidence of specific abnormalities in brain network architecture underlying autism that are quantifiable using standard clinical MRI.


Asunto(s)
Trastorno Autístico/fisiopatología , Encéfalo/fisiopatología , Imagen por Resonancia Magnética/métodos , Red Nerviosa/fisiología , Adolescente , Mapeo Encefálico , Estudios de Casos y Controles , Niño , Preescolar , Demografía , Humanos , Masculino , Pruebas Neuropsicológicas , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA