Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 135(30): 11048-54, 2013 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-23865951

RESUMEN

Peptide-based methods represent new approaches to selectively produce nanostructures with potentially important functionality. Unfortunately, biocombinatorial methods can only select peptides with target affinity and not for the properties of the final material. In this work, we present evidence to demonstrate that materials-directing peptides can be controllably modified to substantially enhance particle functionality without significantly altering nanostructural morphology. To this end, modification of selected residues to vary the site-specific binding strength and biological recognition can be employed to increase the catalytic efficiency of peptide-capped Pd nanoparticles. These results represent a step toward the de novo design of materials-directing peptides that control nanoparticle structure/function relationships.


Asunto(s)
Nanopartículas del Metal/química , Oligopéptidos/química , Platino (Metal)/química , Secuencia de Aminoácidos , Catálisis , Modelos Moleculares , Conformación Molecular , Propiedades de Superficie
2.
Mol Pharmacol ; 82(3): 488-99, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22695718

RESUMEN

We have shown previously that the function of Ycf1p, yeast ortholog of multidrug resistance-associated protein 1 (MRP1), is regulated by yeast casein kinase 2α (Cka1p) via phosphorylation at Ser251. In this study, we explored whether casein kinase 2α (CK2α), the human homolog of Cka1p, regulates MRP1 by phosphorylation at the semiconserved site Thr249. Knockdown of CK2α in MCF7-derived cells expressing MRP1 [MRP1 CK2α(-)] resulted in increased doxorubicin sensitivity. MRP1-dependent transport of leukotriene C(4) and estradiol-17ß-d-glucuronide into vesicles derived from MRP1 CK2α(-) cells was decreased compared with MRP1 vesicles. Moreover, mutation of Thr249 to alanine (MRP1-T249A) also resulted in decreased MRP1-dependent transport, whereas a phosphomimicking mutation (MRP1-T249E) led to dramatic increase in MRP1-dependent transport. Studies in tissue culture confirmed these findings, showing increased intracellular doxorubicin accumulation in MRP1 CK2α(-) and MRP1-T249A cells compared with MRP1 cells. Inhibition of CK2 kinase by 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole resulted in increased doxorubicin accumulation in MRP1 cells, but not in MRP1 CK2α(-), MRP1-T249A, or MRP1-T249E cells, suggesting that CK2α regulates MRP1 function via phosphorylation of Thr249. Indeed, CK2α and MRP1 interact physically, and recombinant CK2 phosphorylates MRP1-derived peptide in vitro in a Thr249-dependent manner, whereas knockdown of CK2α results in decreased phosphorylation at MRP1-Thr249. The role of CK2 in regulating MRP1 was confirmed in other cancer cell lines where CK2 inhibition decreased MRP1-mediated efflux of doxorubicin and increased doxorubicin cytotoxicity. This study supports a model in which CK2α potentiates MRP1 function via direct phosphorylation of Thr249.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Transporte Biológico , Quinasa de la Caseína II/antagonistas & inhibidores , Quinasa de la Caseína II/genética , Línea Celular Tumoral , Doxorrubicina/farmacología , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Estradiol/análogos & derivados , Estradiol/metabolismo , Humanos , Leucotrieno C4/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Mutación , Fosforilación
3.
J Am Chem Soc ; 133(32): 12346-9, 2011 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-21774561

RESUMEN

The ability to control the size, shape, composition, and activity of nanomaterials presents a formidable challenge. Peptide approaches represent new avenues to achieve such control at the synthetic level; however, the critical interactions at the bio/nano interface that direct such precision remain poorly understood. Here we present evidence to suggest that materials-directing peptides bind at specific time points during Pd nanoparticle (NP) growth, dictated by material crystallinity. As such surfaces are presented, rapid peptide binding occurs, resulting in the stabilization and size control of single-crystal NPs. Such specificity suggests that peptides could be engineered to direct the structure of nanomaterials at the atomic level, thus enhancing their activity.


Asunto(s)
Nanopartículas/química , Paladio/química , Péptidos/química , Sitios de Unión , Cristalización , Simulación de Dinámica Molecular , Nanopartículas/ultraestructura , Tamaño de la Partícula , Unión Proteica , Propiedades de Superficie
4.
Nanomaterials (Basel) ; 11(8)2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34443933

RESUMEN

Gold and silver salt mixtures are incorporated in ceramic glazes for in situ development of mixtures of gold and silver nanoparticles (NPs) that subsequently allow for a wide spectrum of low metal loading color control within ceramic materials. Prior work has shown that gold NPs can be used to create vibrant, color-rich red pigments in high-temperature ceramic and glass applications, though the achievable diameter of the gold NP ultimately limits the available range of color. The current study significantly expands color control from traditional gold nanoparticle red through silver nanoparticle green via the alteration of gold-to-silver salt ratios incorporated in the glaze formulations prior to sintering. Nanoparticle-based coloring systems are tested in both oxidative and reductive firing atmospheres. While the oxidation environment is found to be prohibitive for silver NP stability, the reductive atmosphere is able to form and sustain mixtures of gold and silver NPs across a wide color spectrum. All glazes are analyzed via reflectance spectrometry for color performance and samples are characterized via TEM and EDS for composition and sizing trends. This study creates new groundwork for a color-controlled NP system based on noble metal ratio blends that are both nontoxic and achieved with radically lower metal pigment loading than traditional glazes.

6.
ACS Nano ; 6(2): 1625-36, 2012 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-22276921

RESUMEN

The ability to tune the size, shape, and composition of nanomaterials at length scales <10 nm remains a challenging task. Such capabilities are required to fully realize the application of nanotechnology for catalysis, energy storage, and biomedical technologies. Conversely, nature employs biomacromolecules such as proteins and peptides as highly specific nanoparticle ligands that demonstrate exacting precision over the particle morphology through controlling the biotic/abiotic interface. Here we demonstrate the ability to finely tune the size, surface structure, and functionality of single-crystal Pd nanoparticles between 2 and 3 nm using materials directing peptides. This was achieved by selectively altering the peptide sequence to change the binding motif, which in turn modifies the surface structure of the particles. The materials were fully characterized before and after reduction using atomically resolved spectroscopic and microscopic analyses, which indicated that the coordination environment prior to reduction significantly affects the structure of the final nanoparticles. Additionally, changes to the particle surface structure, as a function of peptide sequence, can allow for chloride ion coordination that alters the catalytic abilities of the materials for the C-C coupling Stille reaction. These results suggest that peptide-based approaches may be able to achieve control over the structure/function relationship of nanomaterials where the peptide sequence could be used to selectivity tune such capabilities.


Asunto(s)
Nanopartículas del Metal/química , Oligopéptidos/química , Paladio/química , Tamaño de la Partícula , Secuencia de Aminoácidos , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA