Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Neurooncol ; 168(1): 125-138, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38563850

RESUMEN

PURPOSE: Triple-negative breast cancer (TNBC) often metastasizes to the central nervous system (CNS) and has the highest propensity among breast cancer subtypes to develop leptomeningeal disease (LMD). LMD is a spread of cancer into leptomeningeal space that speeds up the disease progression and severely aggravates the prognosis. LMD has limited treatment options. We sought to test whether the common anti-helminthic drug mebendazole (MBZ) may be effective against murine TNBC LMD. METHODS: A small-molecule screen involving TNBC cell lines identified benzimidazoles as potential therapeutic agents for further study. In vitro migration assays were used to evaluate cell migration capacity and the effect of MBZ. For in vivo testing, CNS metastasis was introduced into BALB/c athymic nude mice through internal carotid artery injections of brain-tropic MDA-MB-231-BR or MCF7-BR cells. Tumor growth and spread was monitored by bioluminescence imaging and immunohistochemistry. MBZ was given orally at 50 and 100 mg/kg doses. MBZ bioavailability was assayed by mass spectrometry. RESULTS: Bioinformatic analysis and migration assays revealed higher migratory capacity of TNBC compared to other breast cancer subtypes. MBZ effectively slowed down migration of TNBC cell line MDA-MB-231 and its brain tropic derivative MDA-MB-231-BR. In animal studies, MBZ reduced leptomeningeal spread, and extended survival in brain metastasis model produced by MDA-MB-231-BR cells. MBZ did not have an effect in the non-migratory MCF7-BR model. CONCLUSIONS: We demonstrated that MBZ is a safe and effective oral agent in an animal model of TNBC CNS metastasis. Our findings are concordant with previous efforts involving MBZ and CNS pathology and support the drug's potential utility to slow down leptomeningeal spread.


Asunto(s)
Movimiento Celular , Reposicionamiento de Medicamentos , Mebendazol , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Animales , Humanos , Femenino , Mebendazol/farmacología , Mebendazol/uso terapéutico , Ratones , Movimiento Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Neoplasias del Sistema Nervioso Central/secundario , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos
2.
Proc Natl Acad Sci U S A ; 116(36): 18009-18014, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31427509

RESUMEN

Citrus greening disease, also known as huanglongbing (HLB), is the most devastating disease of Citrus worldwide. This incurable disease is caused primarily by the bacterium Candidatus Liberibacter asiaticus and spread by feeding of the Asian Citrus Psyllid, Diaphorina citriCa L. asiaticus cannot be cultured; its growth is restricted to citrus phloem and the psyllid insect. Management of infected trees includes use of broad-spectrum antibiotics, which have disadvantages. Recent work has sought to identify small molecules that inhibit Ca L. asiaticus transcription regulators, based on a premise that at least some regulators control expression of genes necessary for virulence. We describe a synthetic, high-throughput screening system to identify compounds that inhibit activity of Ca L. asiaticus transcription activators LdtR, RpoH, and VisNR. Our system uses the closely related model bacterium, Sinorhizobium meliloti, as a heterologous host for expression of a Ca L. asiaticus transcription activator, the activity of which is detected through expression of an enhanced green fluorescent protein (EGFP) gene fused to a target promoter. We used this system to screen more than 120,000 compounds for compounds that inhibited regulator activity, but not growth. Our screen identified several dozen compounds that inhibit regulator activity in our assay. This work shows that, in addition to providing a means of characterizing Ca L. asiaticus regulators, an S. meliloti host can be used for preliminary identification of candidate inhibitory molecules.


Asunto(s)
Antibacterianos , Proteínas Bacterianas/antagonistas & inhibidores , Rhizobiaceae/metabolismo , Transactivadores/antagonistas & inhibidores , Antibacterianos/química , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citrus/microbiología , Evaluación Preclínica de Medicamentos , Enfermedades de las Plantas/microbiología , Rhizobiaceae/genética , Transactivadores/genética , Transactivadores/metabolismo
3.
Br J Cancer ; 125(10): 1365-1376, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34588615

RESUMEN

BACKGROUND: There is no effective therapy for patients with malignant pleural mesothelioma (MPM) who progressed to platinum-based chemotherapy and immunotherapy. METHODS: We aimed to investigate the antitumor activity of CDK4/6 inhibitors using in vitro and in vivo preclinical models of MPM. RESULTS: Based on publicly available transcriptomic data of MPM, patients with CDK4 or CDK6 overexpression had shorter overall survival. Treatment with abemaciclib or palbociclib at 100 nM significantly decreased cell proliferation in all cell models evaluated. Both CDK4/6 inhibitors significantly induced G1 cell cycle arrest, thereby increasing cell senescence and increased the expression of interferon signalling pathway and tumour antigen presentation process in culture models of MPM. In vivo preclinical studies showed that palbociclib significantly reduced tumour growth and prolonged overall survival using distinct xenograft models of MPM implanted in athymic mice. CONCLUSIONS: Treatment of MPM with CDK4/6 inhibitors decreased cell proliferation, mainly by promoting cell cycle arrest at G1 and by induction of cell senescence. Our preclinical studies provide evidence for evaluating CDK4/6 inhibitors in the clinic for the treatment of MPM.


Asunto(s)
Aminopiridinas/administración & dosificación , Bencimidazoles/administración & dosificación , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/genética , Mesotelioma Maligno/tratamiento farmacológico , Piperazinas/administración & dosificación , Inhibidores de Proteínas Quinasas/administración & dosificación , Piridinas/administración & dosificación , Anciano , Aminopiridinas/farmacología , Animales , Bencimidazoles/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Mesotelioma Maligno/genética , Mesotelioma Maligno/metabolismo , Ratones , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Regulación hacia Arriba/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Am J Respir Crit Care Med ; 199(1): 83-98, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30107138

RESUMEN

RATIONALE: Pulmonary arterial hypertension (PAH) is characterized by progressive narrowing of pulmonary arteries, resulting in right heart failure and death. BMPR2 (bone morphogenetic protein receptor type 2) mutations account for most familial PAH forms whereas reduced BMPR2 is present in many idiopathic PAH forms, suggesting dysfunctional BMPR2 signaling to be a key feature of PAH. Modulating BMPR2 signaling is therapeutically promising, yet how BMPR2 is downregulated in PAH is unclear. OBJECTIVES: We intended to identify and pharmaceutically target BMPR2 modifier genes to improve PAH. METHODS: We combined siRNA high-throughput screening of >20,000 genes with a multicohort analysis of publicly available PAH RNA expression data to identify clinically relevant BMPR2 modifiers. After confirming gene dysregulation in tissue from patients with PAH, we determined the functional roles of BMPR2 modifiers in vitro and tested the repurposed drug enzastaurin for its propensity to improve experimental pulmonary hypertension (PH). MEASUREMENTS AND MAIN RESULTS: We discovered FHIT (fragile histidine triad) as a novel BMPR2 modifier. BMPR2 and FHIT expression were reduced in patients with PAH. FHIT reductions were associated with endothelial and smooth muscle cell dysfunction, rescued by enzastaurin through a dual mechanism: upregulation of FHIT as well as miR17-5 repression. Fhit-/- mice had exaggerated hypoxic PH and failed to recover in normoxia. Enzastaurin reversed PH in the Sugen5416/hypoxia/normoxia rat model, by improving right ventricular systolic pressure, right ventricular hypertrophy, cardiac fibrosis, and vascular remodeling. CONCLUSIONS: This study highlights the importance of the novel BMPR2 modifier FHIT in PH and the clinical value of the repurposed drug enzastaurin as a potential novel therapeutic strategy to improve PAH.


Asunto(s)
Ácido Anhídrido Hidrolasas/genética , Hipertensión Pulmonar Primaria Familiar/genética , Genes Modificadores/genética , Proteínas de Neoplasias/genética , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Modelos Animales de Enfermedad , Hipertensión Pulmonar Primaria Familiar/metabolismo , Femenino , Humanos , Indoles/farmacología , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
5.
Br J Cancer ; 119(8): 971-977, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30283144

RESUMEN

BACKGROUND: Genome-wide association studies on colorectal cancer have identified more than 60 susceptibility loci, but for most of them there is no clear knowledge of functionality or the underlying gene responsible for the risk modification. Expression quantitative trail loci (eQTL) may provide functional information for such single nucleotide polymorphisms (SNPs). METHODS: We have performed detailed eQTL analysis specific for colon tissue on a series of 97 colon tumours, their paired adjacent normal mucosa and 47 colon mucosa samples donated by healthy individuals. R package MatrixEQTL was used to search for genome-wide cis-eQTL and trans-eQTL fitting linear models adjusted for age, gender and tissue type to rank transformed expression data. RESULTS: The cis-eQTL analyses has revealed 29,073 SNP-gene associations with permutation-adjusted P-values < 0.01. These correspond to 363 unique genes. The trans-eQTL analysis identified 10,665 significant SNP-gene associations, most of them in the same chromosome, further than 1 Mb of the gene. We provide a web tool to search for specific SNPs or genes. The tool calculates Pearson or Spearman correlation, and allows to select tissue type for analysis. Data and plots can be exported. CONCLUSIONS: This resource should be useful to prioritise SNPs for further functional studies and to identify relevant genes behind identified loci.


Asunto(s)
Neoplasias del Colon/genética , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Colon/patología , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Humanos
6.
Br J Cancer ; 117(3): 421-431, 2017 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-28683472

RESUMEN

BACKGROUND: Somatic copy number aberrations (CNAs) are common acquired changes in cancer cells having an important role in the progression of colon cancer (colorectal cancer, CRC). This study aimed to perform a characterisation of CNA and their impact in gene expression. METHODS: Copy number aberrations were inferred from SNP array data in a series of 99 CRC. Copy number aberration events were calculated and used to assess the association between copy number dosage, clinical and molecular characteristics of the tumours, and gene expression changes. All analyses were adjusted for the quantity of stroma in each sample, which was inferred from gene expression data. RESULTS: High heterogeneity among samples was observed; the proportion of altered genome ranged between 0.04 and 26.6%. Recurrent CNA regions with gains were frequent in chromosomes 7p, 8q, 13q, and 20, whereas 8p, 17p, and 18 cumulated losses. A significant positive correlation was observed between the number of somatic mutations and total CNA (Spearman's r=0.42, P=0.006). Approximately 37% of genes located in CNA regions changed their level of expression and the average partial correlation (adjusted for stromal content) with copy number was 0.54 (interquartile range 0.20 to 0.81). Altered genes showed enrichment in pathways relevant for CRC. Tumours classified as CMS2 and CMS4 by the consensus molecular subtyping showed higher frequency of CNA. Losses of one small region in 1p36.33, with gene CDK11B, were associated with poor prognosis. More than 66% of the recurrent CNA were validated in the The Cancer Genome Atlas (TCGA) data when analysed with the same procedure. Furthermore, 79% of the genes with altered expression in our data were validated in the TCGA. CONCLUSIONS: Although CNA are frequent events in microsatellite stable CRC, few focal recurrent regions were found. These aberrations have strong effects on gene expression and contribute to deregulate relevant cancer pathways. Owing to the diploid nature of stromal cells, it is important to consider the purity of tumour samples to accurately calculate CNA events in CRC.


Asunto(s)
Cromosomas Humanos , Neoplasias del Colon/genética , Dosificación de Gen , Expresión Génica , Repeticiones de Microsatélite , Anciano , Colon , Femenino , Humanos , Masculino , Mutación
7.
Mol Cell ; 35(2): 228-39, 2009 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-19647519

RESUMEN

Signaling pathways that respond to DNA damage are essential for the maintenance of genome stability and are linked to many diseases, including cancer. Here, a genome-wide siRNA screen was employed to identify additional genes involved in genome stabilization by monitoring phosphorylation of the histone variant H2AX, an early mark of DNA damage. We identified hundreds of genes whose downregulation led to elevated levels of H2AX phosphorylation (gammaH2AX) and revealed links to cellular complexes and to genes with unclassified functions. We demonstrate a widespread role for mRNA-processing factors in preventing DNA damage, which in some cases is caused by aberrant RNA-DNA structures. Furthermore, we connect increased gammaH2AX levels to the neurological disorder Charcot-Marie-Tooth (CMT) syndrome, and we find a role for several CMT proteins in the DNA-damage response. These data indicate that preservation of genome stability is mediated by a larger network of biological processes than previously appreciated.


Asunto(s)
Inestabilidad Genómica , ARN Interferente Pequeño/fisiología , Transducción de Señal , Enfermedad de Charcot-Marie-Tooth/genética , Biología Computacional , Daño del ADN , Reparación del ADN/genética , Replicación del ADN/genética , Regulación hacia Abajo , Genes cdc , Biblioteca Genómica , Genómica , Células HeLa , Histonas/metabolismo , Humanos , Fosforilación , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo
8.
Proc Natl Acad Sci U S A ; 109(37): E2476-85, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22895790

RESUMEN

Up-regulation of the folding machinery of the heat-shock protein 90 (Hsp90) chaperone protein is crucial for cancer progression. The two Hsp90 isoforms (α and ß) play different roles in response to chemotherapy. To identify isoform-selective inhibitors of Hsp90(α/ß)/cochaperone p23 interactions, we developed a dual-luciferase (Renilla and Firefly) reporter system for high-throughput screening (HTS) and monitoring the efficacy of Hsp90 inhibitors in cell culture and live mice. HTS of a 30,176 small-molecule chemical library in cell culture identified a compound, N-(5-methylisoxazol-3-yl)-2-[4-(thiophen-2-yl)-6-(trifluoromethyl)pyrimidin-2-ylthio]acetamide (CP9), that binds to Hsp90(α/ß) and displays characteristics of Hsp90 inhibitors, i.e., degradation of Hsp90 client proteins and inhibition of cell proliferation, glucose metabolism, and thymidine kinase activity, in multiple cancer cell lines. The efficacy of CP9 in disrupting Hsp90(α/ß)/p23 interactions and cell proliferation in tumor xenografts was evaluated by non-invasive, repetitive Renilla luciferase and Firefly luciferase imaging, respectively. At 38 h posttreatment (80 mg/kg × 3, i.p.), CP9 led to selective disruption of Hsp90α/p23 as compared with Hsp90ß/p23 interactions. Small-animal PET/CT in the same cohort of mice showed that CP9 treatment (43 h) led to a 40% decrease in (18)F-fluorodeoxyglucose uptake in tumors relative to carrier control-treated mice. However, CP9 did not lead to significant degradation of Hsp90 client proteins in tumors. We performed a structural activity relationship study with 62 analogs of CP9 and identified A17 as the lead compound that outperformed CP9 in inhibiting Hsp90(α/ß)/p23 interactions in cell culture. Our efforts demonstrated the power of coupling of HTS with multimodality molecular imaging and led to identification of Hsp90 inhibitors.


Asunto(s)
Acetamidas/farmacología , Benzoquinonas/farmacología , Proteínas HSP90 de Choque Térmico/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Lactamas Macrocíclicas/farmacología , Neoplasias/metabolismo , Tioacetamida/análogos & derivados , Tiofenos/farmacología , Animales , Western Blotting , Línea Celular Tumoral , Descubrimiento de Drogas , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Ensayos Analíticos de Alto Rendimiento , Humanos , Imidazoles , Inmunoprecipitación , Plomo/farmacología , Luciferasas de Luciérnaga , Luciferasas de Renilla , Ratones , Ratones Desnudos , Neoplasias/tratamiento farmacológico , Tomografía de Emisión de Positrones , Prostaglandina-E Sintasas , Pliegue de Proteína , Isoformas de Proteínas/metabolismo , Pirazinas , Bibliotecas de Moléculas Pequeñas , Tioacetamida/farmacología , Tomografía Computarizada por Rayos X , Tritio
9.
Carcinogenesis ; 35(9): 2039-46, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24760461

RESUMEN

In this study, we aim to identify the genes responsible for colorectal cancer risk behind the loci identified in genome-wide association studies (GWAS). These genes may be candidate targets for developing new strategies for prevention or therapy. We analyzed the association of genotypes for 26 GWAS single nucleotide polymorphisms (SNPs) with the expression of genes within a 2 Mb region (cis-eQTLs). Affymetrix Human Genome U219 expression arrays were used to assess gene expression in two series of samples, one of healthy colonic mucosa (n = 47) and other of normal mucosa adjacent to colon cancer (n = 97, total 144). Paired tumor tissues (n = 97) were also analyzed but did not provide additional findings. Partial Pearson correlation (r), adjusted for sample type, was used for the analysis. We have found Bonferroni-significant cis-eQTLs in three loci: rs3802842 in 11q23.1 associated to C11orf53, COLCA1 (C11orf92) and COLCA2 (C11orf93; r = 0.60); rs7136702 in 12q13.12 associated to DIP2B (r = 0.63) and rs5934683 in Xp22.3 associated to SHROOM2 and GPR143 (r = 0.47). For loci in chromosomes 11 and 12, we have found other SNPs in linkage disequilibrium that are more strongly associated with the expression of the identified genes and are better functional candidates: rs7130173 for 11q23.1 (r = 0.66) and rs61927768 for 12q13.12 (r = 0.86). These SNPs are located in DNA regions that may harbor enhancers or transcription factor binding sites. The analysis of trans-eQTLs has identified additional genes in these loci that may have common regulatory mechanisms as shown by the analysis of protein-protein interaction networks.


Asunto(s)
Neoplasias Colorrectales/genética , Proteínas de Neoplasias/genética , Polimorfismo de Nucleótido Simple , Estudios de Casos y Controles , Cromosomas Humanos Par 11/genética , Cromosomas Humanos Par 12/genética , Cromosomas Humanos X , Proteínas del Ojo/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Desequilibrio de Ligamiento , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Sitios de Carácter Cuantitativo , ARN
10.
Mol Cancer ; 13: 46, 2014 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-24597571

RESUMEN

BACKGROUND: A colorectal tumor is not an isolated entity growing in a restricted location of the body. The patient's gut environment constitutes the framework where the tumor evolves and this relationship promotes and includes a complex and tight correlation of the tumor with inflammation, blood vessels formation, nutrition, and gut microbiome composition. The tumor influence in the environment could both promote an anti-tumor or a pro-tumor response. METHODS: A set of 98 paired adjacent mucosa and tumor tissues from colorectal cancer (CRC) patients and 50 colon mucosa from healthy donors (246 samples in total) were included in this work. RNA extracted from each sample was hybridized in Affymetrix chips Human Genome U219. Functional relationships between genes were inferred by means of systems biology using both transcriptional regulation networks (ARACNe algorithm) and protein-protein interaction networks (BIANA software). RESULTS: Here we report a transcriptomic analysis revealing a number of genes activated in adjacent mucosa from CRC patients, not activated in mucosa from healthy donors. A functional analysis of these genes suggested that this active reaction of the adjacent mucosa was related to the presence of the tumor. Transcriptional and protein-interaction networks were used to further elucidate this response of normal gut in front of the tumor, revealing a crosstalk between proteins secreted by the tumor and receptors activated in the adjacent colon tissue; and vice versa. Remarkably, Slit family of proteins activated ROBO receptors in tumor whereas tumor-secreted proteins transduced a cellular signal finally activating AP-1 in adjacent tissue. CONCLUSIONS: The systems-level approach provides new insights into the micro-ecology of colorectal tumorogenesis. Disrupting this intricate molecular network of cell-cell communication and pro-inflammatory microenvironment could be a therapeutic target in CRC patients.


Asunto(s)
Colon/metabolismo , Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica , Mucosa Intestinal/metabolismo , Proteoma , Microambiente Tumoral/genética , Estudios de Casos y Controles , Colon/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Mucosa Intestinal/patología , Análisis por Micromatrices , Mapeo de Interacción de Proteínas , Proteómica , Receptor Cross-Talk , Transducción de Señal , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo
11.
Mol Phylogenet Evol ; 71: 274-87, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24269315

RESUMEN

Studies on the phylogeography of species inhabiting the Mediterranean and the nearby coasts of the NE Atlantic Ocean (MEDAT) have found subdivision and/or phylogeographic structure in one or more of the Atlantic, western Mediterranean and eastern Mediterranean basins. This structure has been explained as the result of past population fragmentation caused by Pleistocene sea level changes and current patterns of marine circulation. However, the increasing use of nuclear markers has revealed that these two factors alone are not enough to explain the phylogeographic patterns, and an additional role has been suggested for endogenous barriers to gene flow or natural selection. In this article we examined the role of these factors in Ruditapes decussatus, a commercial clam species native to MEDAT. A genetic analysis of 11 populations was carried out by examining 6 introns with a PCR-RFLP technique. We found subdivision in three regions: Atlantic (ATL), western Mediterranean plus Tunisia (WMED), and Aegean and Adriatic seas (AEGAD). Two introns (Ech and Tbp) showed alleles that were restricted to AEGAD. Sequencing a subsample of individuals for these introns indicated that AEGAD-specific alleles were separate clades, thus revealing a phylogeographic brake at the WMED-AEGAD boundary. Sequencing of the mitochondrial COI locus confirmed this phylogeographic break. Dating of the AEGAD mitochondrial haplotypes and nuclear alleles with a Bayesian MCMC method revealed that they shared common ancestors in the Pleistocene. These results can be explained in the framework of Pleistocene sea level drops and patterns of gene flow in MEDAT. An additional observation was a lack of differentiation at COI between the ATL and WMED, in sharp contrast with 4 introns that showed clear genetic subdivision. Neutrality tests did not support the hypothesis of a selective sweep acting on mtDNA to explain the contrasting levels of differentiation between mitochondrial and nuclear markers across the ATL-WMED transition, and we argue that the difference between markers is best explained by the existence of an endogenous genetic barrier, rather than by a physical barrier to larval migration alone.


Asunto(s)
Bivalvos/genética , ADN Mitocondrial/genética , Flujo Génico , Filogenia , Animales , Océano Atlántico , Teorema de Bayes , Haplotipos , Humanos , Mar Mediterráneo , Filogeografía , Análisis de Secuencia de ADN
12.
BMC Cancer ; 14: 708, 2014 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-25253512

RESUMEN

BACKGROUND: Dysregulation of transcriptional programs leads to cell malfunctioning and can have an impact in cancer development. Our study aims to characterize global differences between transcriptional regulatory programs of normal and tumor cells of the colon. METHODS: Affymetrix Human Genome U219 expression arrays were used to assess gene expression in 100 samples of colon tumor and their paired adjacent normal mucosa. Transcriptional networks were reconstructed using ARACNe algorithm using 1,000 bootstrap replicates consolidated into a consensus network. Networks were compared regarding topology parameters and identified well-connected clusters. Functional enrichment was performed with SIGORA method. ENCODE ChIP-Seq data curated in the hmChIP database was used for in silico validation of the most prominent transcription factors. RESULTS: The normal network contained 1,177 transcription factors, 5,466 target genes and 61,226 transcriptional interactions. A large loss of transcriptional interactions in the tumor network was observed (11,585; 81% reduction), which also contained fewer transcription factors (621; 47% reduction) and target genes (2,190; 60% reduction) than the normal network. Gene silencing was not a main determinant of this loss of regulatory activity, since the average gene expression was essentially conserved. Also, 91 transcription factors increased their connectivity in the tumor network. These genes revealed a tumor-specific emergent transcriptional regulatory program with significant functional enrichment related to colorectal cancer pathway. In addition, the analysis of clusters again identified subnetworks in the tumors enriched for cancer related pathways (immune response, Wnt signaling, DNA replication, cell adherence, apoptosis, DNA repair, among others). Also multiple metabolism pathways show differential clustering between the tumor and normal network. CONCLUSIONS: These findings will allow a better understanding of the transcriptional regulatory programs altered in colon cancer and could be an invaluable methodology to identify potential hubs with a relevant role in the field of cancer diagnosis, prognosis and therapy.


Asunto(s)
Colon/metabolismo , Neoplasias del Colon/genética , Regulación de la Expresión Génica , Transcripción Genética , Transcriptoma , Análisis por Conglomerados , Biología Computacional , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Mutación , Reproducibilidad de los Resultados
13.
Mol Oncol ; 18(2): 453-470, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37943164

RESUMEN

Lung adenocarcinoma (LUAD) is a molecularly heterogeneous disease. In addition to genomic alterations, cancer transcriptional profiling can be helpful to tailor cancer treatment and to estimate each patient's outcome. Transcriptional activity levels of 50 molecular pathways were inferred in 4573 LUAD patients using Gene Set Variation Analysis (GSVA) method. Seven LUAD subtypes were defined and independently validated based on the combined behavior of the studied pathways: AD (adenocarcinoma subtype) 1-7. AD1, AD4, and AD5 subtypes were associated with better overall survival. AD1 and AD4 subtypes were enriched in epidermal growth factor receptor (EGFR) mutations, whereas AD2 and AD6 showed higher tumor protein p53 (TP53) alteration frequencies. AD2 and AD6 subtypes correlated with higher genome instability, proliferation-related pathway expression, and specific sensitivity to chemotherapy, based on data from LUAD cell lines. LUAD subtypes were able to predict immunotherapy response in addition to CD274 (PD-L1) gene expression and tumor mutational burden (TMB). AD2 and AD4 subtypes were associated with potential resistance and response to immunotherapy, respectively. Thus, analysis of transcriptomic data could improve patient stratification beyond genomics and single biomarkers (i.e., PD-L1 and TMB) and may lay the foundation for more personalized treatment avenues, especially in driver-negative LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Antígeno B7-H1 , Adenocarcinoma del Pulmón/genética , Inmunoterapia , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética
14.
Res Sq ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38405839

RESUMEN

Purpose: Triple-negative breast cancer (TNBC) is an aggressive subtype that often metastasizes to the brain. Leptomeningeal disease (LMD), a devastating brain metastasis common in TNBC, has limited treatment options. We sought to test whether the common anti-helminthic drug mebendazole (MBZ) may be effective against murine TNBC LMD. Methods: A small-molecule screen involving TNBC cell lines identified benzimidazoles as potential therapeutic agents for further study. In vitro migration assays were used to evaluate cell migration capacity and the effect of MBZ. For in vivo testing, LMD was introduced into BALB/c athymic nude mice through internal carotid artery injections of brain-tropic MDA-MB-231-BR or MCF7-BR cells. Tumor growth and spread was monitored by bioluminescence imaging. MBZ was given orally at 50 and 100 mg/kg doses. MBZ bioavailability was assayed by mass spectrometry. Results: Bioinformatic analysis and migration assays revealed higher migratory capacity of TNBC compared to other breast cancer subtypes. MBZ effectively slowed down migration of TNBC cell line MDA-MB-231 and its brain tropic derivative MDA-MB-231-BR. In animal studies, MBZ reduced tumor growth and extended survival in the LMD model produced by MDA-MB-231-BR cells. MBZ did not have an effect in the non-migratory MCF7-BR model. Conclusions: We demonstrated that MBZ is a safe and effective oral agent in an animal model of TNBC LMD. Our findings are concordant with previous efforts involving MBZ and central nervous system pathology and further support the drug's potential utility as an alternative therapeutic for TNBC LMD.

15.
Artículo en Inglés, Español | MEDLINE | ID: mdl-38697283

RESUMEN

INTRODUCTION AND OBJECTIVES: The multiparametric implantable cardioverter-defibrillator HeartLogic index has proven to be a sensitive and timely predictor of impending heart failure (HF) decompensation. We evaluated the impact of a standardized follow-up protocol implemented by nursing staff and based on remote management of alerts. METHODS: The algorithm was activated in HF patients at 19 Spanish centers. Transmitted data were analyzed remotely, and patients were contacted by telephone if alerts were issued. Clinical actions were implemented remotely or through outpatient visits. The primary endpoint consisted of HF hospitalizations or death. Secondary endpoints were HF outpatient visits. We compared the 12-month periods before and after the adoption of the protocol. RESULTS: We analyzed 392 patients (aged 69±10 years, 76% male, 50% ischemic cardiomyopathy) with implantable cardioverter-defibrillators (20%) or cardiac resynchronization therapy defibrillators (80%). The primary endpoint occurred 151 times in 86 (22%) patients during the 12 months before the adoption of the protocol, and 69 times in 45 (11%) patients (P<.001) during the 12 months after its adoption. The mean number of hospitalizations per patient was 0.39±0.89 pre- and 0.18±0.57 postadoption (P<.001). There were 185 outpatient visits for HF in 96 (24%) patients before adoption and 64 in 48 (12%) patients after adoption (P<.001). The mean number of visits per patient was 0.47±1.11 pre- and 0.16±0.51 postadoption (P<.001). CONCLUSIONS: A standardized follow-up protocol based on remote management of HeartLogic alerts enabled effective remote management of HF patients. After its adoption, we observed a significant reduction in HF hospitalizations and outpatient visits.

16.
Blood ; 117(4): 1311-4, 2011 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-21081713

RESUMEN

Activation of the adaptive Ire1-XBP1 pathway has been identified in many solid tumors and hematologic malignancies, including multiple myeloma (MM). Here, we report the identification of STF-083010, a novel small-molecule inhibitor of Ire1. STF-083010 inhibited Ire1 endonuclease activity, without affecting its kinase activity, after endoplasmic reticulum stress both in vitro and in vivo. Treatment with STF-083010 showed significant antimyeloma activity in model human MM xenografts. Similarly, STF-083010 was preferentially toxic to freshly isolated human CD138(+) MM cells compared with other similarly isolated cell populations. The identification of this novel Ire1 inhibitor supports the hypothesis that the Ire1-XBP1 axis is a promising target for anticancer therapy, especially in the context of MM.


Asunto(s)
Citotoxinas/farmacología , Endorribonucleasas/antagonistas & inhibidores , Mieloma Múltiple/patología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Sulfonamidas/farmacología , Tiofenos/farmacología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Ácidos Borónicos/administración & dosificación , Bortezomib , Células Cultivadas , Citotoxinas/uso terapéutico , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Modelos Biológicos , Mieloma Múltiple/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirazinas/administración & dosificación , Especificidad por Sustrato/efectos de los fármacos , Sulfonamidas/administración & dosificación , Sulfonamidas/uso terapéutico , Tiofenos/administración & dosificación , Tiofenos/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Ecotoxicology ; 22(5): 915-28, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23681738

RESUMEN

Zebra mussel populations in Ebro and Mijares Rivers (northern Spain) were analyzed to study the mechanisms by which this aquatic species deals with pollution. Variability analyses of mitochondrial cytochrome oxidase I gene and of one nuclear microsatellite were performed for ten populations from the Ebro River and one from the Mijares River. Comparison of these results with those from five additional European populations indicated that the Spanish populations constitute a homogeneous gene pool. Transcriptome analyses of gill samples from a subset of the Spanish populations showed changes on expression levels that correlated with variations in general fitness and loads of heavy metals. The less polluted upstream Ebro populations showed overexpression of mitochondrial and cell proliferation-related genes compared to the more polluted, downstream Ebro populations. Our data indicate that heavy metals were the main factors explaining these transcriptomic patterns, and that zebra mussel is resilient to pollutants (like mercury and organochlorine compounds) proved to be extremely toxic to vertebrates. We propose that zebra mussel populations sharing a common gene pool may acclimate to different levels and forms of pollution through modulations in their transcriptomic profile, although direct selection on genes showing differential expression patterns cannot be ruled out.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Dreissena/fisiología , Interacción Gen-Ambiente , Genotipo , Fenotipo , Contaminantes Químicos del Agua/toxicidad , Animales , Ecosistema , Ríos , España
18.
Cancers (Basel) ; 15(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37444411

RESUMEN

We aimed to identify and validate a set of miRNAs that could serve as a prognostic signature useful to determine the recurrence risk for patients with COAD. Small RNAs from tumors of 100 stage II, untreated, MSS colon cancer patients were sequenced for the discovery step. For this purpose, we built an miRNA score using an elastic net Cox regression model based on the disease-free survival status. Patients were grouped into high or low recurrence risk categories based on the median value of the score. We then validated these results in an independent sample of stage II microsatellite stable tumor tissues, with a hazard ratio of 3.24, (CI95% = 1.05-10.0) and a 10-year area under the receiver operating characteristic curve of 0.67. Functional analysis of the miRNAs present in the signature identified key pathways in cancer progression. In conclusion, the proposed signature of 12 miRNAs can contribute to improving the prediction of disease relapse in patients with stage II MSS colorectal cancer, and might be useful in deciding which patients may benefit from adjuvant chemotherapy.

19.
bioRxiv ; 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34159337

RESUMEN

Targeting host factors exploited by multiple viruses could offer broad-spectrum solutions for pandemic preparedness. Seventeen candidates targeting diverse functions emerged in a screen of 4,413 compounds for SARS-CoV-2 inhibitors. We demonstrated that lapatinib and other approved inhibitors of the ErbB family receptor tyrosine kinases suppress replication of SARS-CoV-2, Venezuelan equine encephalitis virus (VEEV), and other emerging viruses with a high barrier to resistance. Lapatinib suppressed SARS-CoV-2 entry and later stages of the viral life cycle and showed synergistic effect with the direct-acting antiviral nirmatrelvir. We discovered that ErbB1, 2 and 4 bind SARS-CoV-2 S1 protein and regulate viral and ACE2 internalization, and they are required for VEEV infection. In human lung organoids, lapatinib protected from SARS-CoV-2-induced activation of ErbB-regulated pathways implicated in non-infectious lung injury, pro-inflammatory cytokine production, and epithelial barrier injury. Lapatinib suppressed VEEV replication, cytokine production and disruption of the blood-brain barrier integrity in microfluidic-based human neurovascular units, and reduced mortality in a lethal infection murine model. We validated lapatinib-mediated inhibition of ErbB activity as an important mechanism of antiviral action. These findings reveal regulation of viral replication, inflammation, and tissue injury via ErbBs and establish a proof-of-principle for a repurposed, ErbB-targeted approach to combat emerging viruses.

20.
J Clin Invest ; 133(19)2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37581931

RESUMEN

Targeting host factors exploited by multiple viruses could offer broad-spectrum solutions for pandemic preparedness. Seventeen candidates targeting diverse functions emerged in a screen of 4,413 compounds for SARS-CoV-2 inhibitors. We demonstrated that lapatinib and other approved inhibitors of the ErbB family of receptor tyrosine kinases suppress replication of SARS-CoV-2, Venezuelan equine encephalitis virus (VEEV), and other emerging viruses with a high barrier to resistance. Lapatinib suppressed SARS-CoV-2 entry and later stages of the viral life cycle and showed synergistic effect with the direct-acting antiviral nirmatrelvir. We discovered that ErbB1, ErbB2, and ErbB4 bind SARS-CoV-2 S1 protein and regulate viral and ACE2 internalization, and they are required for VEEV infection. In human lung organoids, lapatinib protected from SARS-CoV-2-induced activation of ErbB-regulated pathways implicated in non-infectious lung injury, proinflammatory cytokine production, and epithelial barrier injury. Lapatinib suppressed VEEV replication, cytokine production, and disruption of blood-brain barrier integrity in microfluidics-based human neurovascular units, and reduced mortality in a lethal infection murine model. We validated lapatinib-mediated inhibition of ErbB activity as an important mechanism of antiviral action. These findings reveal regulation of viral replication, inflammation, and tissue injury via ErbBs and establish a proof of principle for a repurposed, ErbB-targeted approach to combat emerging viruses.


Asunto(s)
COVID-19 , Hepatitis C Crónica , Animales , Humanos , Ratones , Antivirales/farmacología , Citocinas , Inflamación/tratamiento farmacológico , Lapatinib/farmacología , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA