Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anaerobe ; 63: 102217, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32461082

RESUMEN

Susceptibility profiles of anaerobic bacteria to antibiotics have become unpredictable, thus reliable and user-friendly methods for routine susceptibility testing are needed. In this study, we evaluated the MICRONAUT-S Anaerobes MIC test plate, a commercially available broth microdilution method, and suitable for clinical microbiology routine testing. We analyzed a collection of 300 consecutive clinically significant isolates, including 149 Gram-positive and 151 Gram-negative strains. The performance of the MICRONAUT-S Anaerobes MIC plate was compared to that of a gradient diffusion method (current laboratory standard), calculating the essential and the categorial agreement. 99.7% (299/300) of the strains included in this study successfully grew in the MICRONAUT-S Anaerobes MIC plate (73% of them after 24 h of incubation), while 1 Porphyromonas uenoni isolate didn't grow. It showed a high concordance with the gradient diffusion method. Overall essential and categorical agreements resulted >95% and >97%, respectively, and only a low rate of errors was observed. Beyond the very good analytical performance, several technical advantages in comparison with the gradient diffusion method were observed, that contribute to make the MICRONAUT-S Anaerobes panels suitable for an easy implementation into laboratory routine.


Asunto(s)
Pruebas de Sensibilidad Microbiana/métodos , Antibacterianos/farmacología , Bacterias Anaerobias/efectos de los fármacos
3.
Microorganisms ; 12(1)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38258007

RESUMEN

Fourier transform infrared spectroscopy (FTIRS) is a diagnostic technique historically used in the microbiological field for the characterization of bacterial strains in relation to the specific composition of their lipid, protein, and polysaccharide components. For each bacterial strain, it is possible to obtain a unique absorption spectrum that represents the fingerprint obtained based on the components of the outer cell membrane. In this study, FTIRS was applied for the first time as an experimental diagnostic tool for the discrimination of two pathogenic species belonging to the Bacillus cereus group, Bacillus anthracis and Bacillus cereus sensu stricto; these are two closely related species that are not so easy to differentiate using classical microbiological methods, representing an innovative technology in the field of animal health.

5.
Front Microbiol ; 14: 1150942, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37125166

RESUMEN

This study developed and validated a method, based on the coupling of Fourier-transform infrared spectroscopy (FT-IR) and machine learning, for the automated serotyping of Legionella pneumophila serogroup 1, Legionella pneumophila serogroups 2-15 as well as their successful discrimination from Legionella non-pneumophila. As Legionella presents significant intra- and inter-species heterogeneities, careful data validation strategies were applied to minimize late-stage performance variations of the method across a large microbial population. A total of 244 isolates were analyzed. In details, the method was validated with a multi-centric approach with isolates from Italian thermal and drinking water (n = 82) as well as with samples from German, Italian, French, and British collections (n = 162). Specifically, robustness of the method was verified over the time-span of 1 year with multiple operators and two different FT-IR instruments located in Italy and Germany. Moreover, different production procedures for the solid culture medium (in-house or commercial) and different culture conditions (with and without 2.5% CO2) were tested. The method achieved an overall accuracy of 100, 98.5, and 93.9% on the Italian test set of Legionella, an independent batch of Legionella from multiple European culture collections, and an extra set of rare Legionella non-pneumophila, respectively.

6.
J Microbiol Methods ; 212: 106792, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37517511

RESUMEN

Mycobacterium abscessus complex (MABSC) subspecies differentiation improves patients' therapy and outcome. Fourier-Transform-Infrared Spectroscopy (FT-IRS) was applied for subspecies discrimination of 15 strains on different media: Löwenstein-Jensen showed the best resolution power; Linear Discriminant Analysis model differentiated M. abscessus susbsp. abscessus from M. abscessus subsp. massiliense. FT-IRS has a potential role in rapidly MABSC subspecies identification.


Asunto(s)
Mycobacterium abscessus , Humanos , Espectroscopía Infrarroja por Transformada de Fourier
7.
J Med Microbiol ; 71(8)2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35930326

RESUMEN

Sepsis is one of the leading causes of death worldwide. The rapid identification (ID) of the causative micro-organisms is crucial for the patients' clinical outcome. MALDI-TOF MS has been widely investigated to speed up the time-to-report for ID from positive blood cultures, and many different procedures and protocols were developed, all of them attributable either to the direct separation of microbial cells from the blood cells, or to a short subculture approach. In this study, the Rapid Sepsityper workflow (MBT Sepsityper IVD Kit, Bruker Daltonics GmbH and Co. KG, Bremen, Germany) was compared to three different short subculturing methods, established into the routine practice of three different clinical microbiology laboratories. A total of N=503 routine samples were included in this study and tested in parallel with the two approaches. Results of the rapid procedures were finally compared to routine proceedings with Gram-staining and overnight subculture. Among monomicrobial samples, the Rapid Sepsityper workflow enabled overall the correct identification of 388/443 (87.6 %) micro-organisms, while the short subculturing methods of 267/435 (61.8 %). Except for the performance with Streptococcus pneumoniae, in each one of the three sites the Rapid Sepsityper workflow proved to be superior to the short subculture method, regardless of the protocol applied, and it delivered a result from 1 to 5 h earlier.


Asunto(s)
Bacteriemia , Cultivo de Sangre , Bacteriemia/diagnóstico , Bacteriemia/microbiología , Técnicas Bacteriológicas/métodos , Cultivo de Sangre/métodos , Humanos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Flujo de Trabajo
8.
Front Microbiol ; 13: 1052420, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36569057

RESUMEN

Probiotic bacteria, capable of conferring benefits to the host, can present challenges in design, development, scale-up, manufacturing, commercialization, and life cycle management. Strain identification is one of the main quality parameters; nevertheless, this task can be challenging since established methodologies can lack resolution at the strain level for some microorganisms and\or are labor-intensive and time-consuming. Fourier transform infrared spectroscopy (FTIRS) has been largely used for the investigation of pathogenic species in the clinical field, whereas only recently has been proposed for the identification of probiotic strains. Within the probiotic industrial production, bacterial strains can be subjected to stressful conditions that may affect genomic and phenotypic characteristics; therefore, real-time monitoring of all the sequential growth steps is requested. Considering the fast, low-cost, and high-throughput features, FTIRS is an innovative and functional technology for typing probiotic strains from bench-top experiments to large-scale industrial production, allowing the monitoring of stability and identity of probiotic strains. In this study, the discriminatory power of FTIRS was assessed for four Lactiplantibacillus plantarum probiotic strains grown under different conditions, including temperatures (30 and 37°C) and medium (broth and agar), after consecutive sub-culturing steps. A comparison between the generated spectra with pulsed-field gel electrophoresis (PFGE) profiles was also performed. FTIRS was not only able to distinguish the strains of L. plantarum under different growth conditions but also to prove the phenotypic stability of L. plantarum type strain LP-CT after six growing steps. Regardless of the growth conditions, FTIRS spectra related to LP-CT constituted a unique hierarchical cluster, separated from the other L. plantarum strains. These results were confirmed by a PFGE analysis. In addition, based on FTIRS data, broth cultures demonstrated a higher reproducibility and discriminatory power with respect to agar ones. These results support the introduction of FTIRS in the probiotic industry, allowing for the step-by-step monitoring of massive microbial production while also guaranteeing the stability and purity of the probiotic strain. The proposed novel approach can constitute an impressive improvement in the probiotic manufacturing process.

9.
Front Microbiol ; 13: 866426, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35558114

RESUMEN

Legionella spp. are Gram-negative bacteria that inhabit freshwater environments representing a serious risk for human health. Legionella pneumophila (Lp) is the species most frequently responsible for a severe pneumonia known as Legionnaires' disease. Lp consists of 15 serogroups (Sgs), usually identified by monoclonal or polyclonal antibodies. With regard to Lp serogrouping, it is well known that phenotyping methods do not have a sufficiently high discriminating power, while genotypic methods although very effective, are expensive and laborious. Recently, mass spectrometry and infrared spectroscopy have proved to be rapid and successful approaches for the microbial identification and typing. Different biomolecules (e.g., lipopolysaccharides) adsorb infrared radiation originating from a specific microbial fingerprint. The development of a classification system based on the intra-species identification features allows a rapid and reliable typing of strains for diagnostic and epidemiological purposes. The aim of the study was the evaluation of Fourier Transform Infrared Spectroscopy using the IR Biotyper® system (Bruker Daltonik, Germany) for the identification of Lp at the serogroup (Sg) level for diagnostic purposes as well as in outbreak events. A large dataset of Lp isolates (n = 133) and ATCC reference strains representing the 15 Lp serogroups were included. The discriminatory power of the instrument's classifier, was tested by Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). All isolates were classified as follows: 12/133 (9.0%) as Lp Sg1 and 115/133 (86.5%) as Lp Sg 2-15 (including both ATCC and environmental Lp serogroup). Moreover, a mis-classification for 2/133 (1.5%) isolates of Lp Sg 2-15 that returned as Lp Sg1 was observed, and 4/133 (3.0%) isolates were not classified. An accuracy of 95.49% and an error rate of 4.51% were calculated. IR Biotyper® is able provide a quick and cost-effective reliable Lp classification with advantages compared with agglutination tests that show ambiguous and unspecific results. Further studies including a larger number of isolates could be useful to implement the classifier obtaining a robust and reliable tool for the routine Lp serogrouping. IR Biotyper® could be a powerful and easy-to-use tool to identify Lp Sgs, especially during cluster/outbreak investigations, to trace the source of the infection and promptly adopt preventive and control strategies.

10.
J Microbiol Methods ; 201: 106564, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36084763

RESUMEN

BACKGROUND: Salmonella enterica is among the major burdens for public health at global level. Typing of salmonellae below the species level is fundamental for different purposes, but traditional methods are expensive, technically demanding, and time-consuming, and therefore limited to reference centers. Fourier transform infrared (FTIR) spectroscopy is an alternative method for bacterial typing, successfully applied for classification at different infra-species levels. AIM: This study aimed to address the challenge of subtyping Salmonella enterica at O-serogroup level by using FTIR spectroscopy. We applied machine learning to develop a novel approach for S. enterica typing, using the FTIR-based IR Biotyper® system (IRBT; Bruker Daltonics GmbH & Co. KG, Germany). We investigated a multicentric collection of isolates, and we compared the novel approach with classical serotyping-based and molecular methods. METHODS: A total of 958 well characterized Salmonella isolates (25 serogroups, 138 serovars), collected in 11 different centers (in Europe and Japan), from clinical, environmental and food samples were included in this study and analyzed by IRBT. Infrared absorption spectra were acquired from water-ethanol bacterial suspensions, from culture isolates grown on seven different agar media. In the first part of the study, the discriminatory potential of the IRBT system was evaluated by comparison with reference typing method/s. In the second part of the study, the artificial intelligence capabilities of the IRBT software were applied to develop a classifier for Salmonella isolates at serogroup level. Different machine learning algorithms were investigated (artificial neural networks and support vector machine). A subset of 88 pre-characterized isolates (corresponding to 25 serogroups and 53 serovars) were included in the training set. The remaining 870 samples were used as validation set. The classifiers were evaluated in terms of accuracy, error rate and failed classification rate. RESULTS: The classifier that provided the highest accuracy in the cross-validation was selected to be tested with four external testing sets. Considering all the testing sites, accuracy ranged from 97.0% to 99.2% for non-selective media, and from 94.7% to 96.4% for selective media. CONCLUSIONS: The IRBT system proved to be a very promising, user-friendly, and cost-effective tool for Salmonella typing at serogroup level. The application of machine learning algorithms proved to enable a novel approach for typing, which relies on automated analysis and result interpretation, and it is therefore free of potential human biases. The system demonstrated a high robustness and adaptability to routine workflows, without the need of highly trained personnel, and proving to be suitable to be applied with isolates grown on different agar media, both selective and unselective. Further tests with currently circulating clinical, food and environmental isolates would be necessary before implementing it as a potentially stand-alone standard method for routine use.


Asunto(s)
Salmonella enterica , Agar , Inteligencia Artificial , Técnicas de Tipificación Bacteriana/métodos , Medios de Cultivo , Etanol , Humanos , Aprendizaje Automático , Salmonella , Serogrupo , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Agua
11.
Future Microbiol ; 16: 1239-1250, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34674538

RESUMEN

Aim:Acinetobacter baumannii is a pathogen of serious concern, often exhibiting multiple antibiotic resistance, frequently associated with hospital outbreaks in intensive care units. A prompt detection and tracking of these isolates is crucial. Reference methods for typing (pulsed-field gel electrophoresis, whole-genome sequencing) are accurate, but expensive and time-consuming, therefore limited to retrospective analysis. Materials & methods: In this study, the application of the FTIR-based IR Biotyper® (IRBT) to track and monitor in real-time the spread of a multidrug-resistant A. baumannii outbreak was investigated. The index case and the multidrug-resistant A. baumannii isolates collected in the following 3 weeks were investigated. Results: IR Biotyper® clustering results were fully confirmed by pulsed-field gel electrophoresis results. Conclusions: IR Biotyper represent a promising tool for real-time hospital hygiene, enabling a prompt and reliable typing.


Asunto(s)
Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii , Espectroscopía Infrarroja por Transformada de Fourier , Acinetobacter baumannii/clasificación , Técnicas de Tipificación Bacteriana , Brotes de Enfermedades , Farmacorresistencia Bacteriana Múltiple , Humanos , Unidades de Cuidados Intensivos , Estudios Retrospectivos
12.
Front Microbiol ; 12: 692975, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34589064

RESUMEN

Fourier transform infrared (FTIR) spectroscopy, a technology traditionally used in chemistry to determine the molecular composition of a wide range of sample types, has gained growing interest in microbial typing. It is based on the different vibrational modes of the covalent bonds between atoms of a given sample, as bacterial cells, induced by the absorption of infrared radiation. This technique has been largely used for the study of pathogenic species, especially in the clinical field, and has been proposed also for the typing at different subspecies levels. The high throughput, speed, low cost, and simplicity make FTIR spectroscopy an attractive technique also for industrial applications, in particular, for probiotics. The aim of this study was to compare FTIR spectroscopy with established genotyping methods, pulsed-field gel electrophoresis (PFGE), whole-genome sequencing (WGS), and multilocus sequence typing (MLST), in order to highlight the FTIR spectroscopy potential discriminatory power at strain level. Our study focused on bifidobacteria, an important group of intestinal commensals generally recognized as probiotics. For their properties in promoting and maintaining health, bifidobacteria are largely marketed by the pharmaceutical, food, and dairy industries. Strains belonging to Bifidobacterium longum subsp. longum and Bifidobacterium animalis subsp. lactis were taken into consideration together with some additional type strains. For B. longum subsp. longum, it was possible to discriminate the strains with all the methods used. Although two isolates were shown to be strictly phylogenetically related, constituting a unique cluster, based on PFGE, WGS, and MLST, no clustering was observed with FTIR. For B. animalis subsp. lactis group, PFGE, WGS, and MLST were non-discriminatory, and only one strain was easily distinguished. On the other hand, FTIR discriminated all the isolates one by one, and no clustering was observed. According to these results, FTIR analysis is not only equivalent to PFGE, WGS, and MLST, but also for some strains, in particular, for B. animalis subsp. lactis group, more informative, being able to differentiate strains not discernible with the other two methods based on phenotypic variations likely deriving from certain genetic changes. Fourier transform infrared spectroscopy has highlighted the possibility of using the cell surface as a kind of barcode making tracing strains possible, representing an important aspect in probiotic applications. Furthermore, this work constitutes the first investigation on bifidobacterial strain typing using FTIR spectroscopy.

13.
Microorganisms ; 9(4)2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33921159

RESUMEN

Typhoidal and para-typhoidal Salmonella are major causes of bacteraemia in resource-limited countries. Diagnostic alternatives to laborious and resource-demanding serotyping are essential. Fourier transform infrared spectroscopy (FTIRS) is a rapidly developing and simple bacterial typing technology. In this study, we assessed the discriminatory power of the FTIRS-based IR Biotyper (Bruker Daltonik GmbH, Bremen, Germany), for the rapid and reliable identification of biochemically confirmed typhoid and paratyphoid fever-associated Salmonella isolates. In total, 359 isolates, comprising 30 S. Typhi, 23 S. Paratyphi A, 23 S. Paratyphi B, and 7 S. Paratyphi C, respectively and other phylogenetically closely related Salmonella serovars belonging to the serogroups O:2, O:4, O:7 and O:9 were tested. The strains were derived from clinical, environmental and food samples collected at different European sites. Applying artificial neural networks, specific automated classifiers were built to discriminate typhoidal serovars from non-typhoidal serovars within each of the four serogroups. The accuracy of the classifiers was 99.9%, 87.0%, 99.5% and 99.0% for Salmonella Typhi, Salmonella Paratyphi A, B and Salmonella Paratyphi C, respectively. The IR Biotyper is a promising tool for fast and reliable detection of typhoidal Salmonella. Hence, IR biotyping may serve as a suitable alternative to conventional approaches for surveillance and diagnostic purposes.

14.
Microb Drug Resist ; 26(11): 1298-1306, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32412820

RESUMEN

The spread of carbapenemase-producing Enterobacterales is a major public health concern worldwide, and methods for their prompt and reliable detection are highly demanded for therapeutic and hygiene control purposes. In this study, we evaluate the MBT STAR®-Carba assay (Bruker Daltonik) to detect the carbapenemase production in clinical and surveillance isolates from plate cultures and directly from patient-derived positive blood cultures bottles. Overall, n = 1,307 samples were analyzed (n = 900 plate cultures, and n = 407 positive blood cultures, using the bacterial pellet obtained with the Sepsityper® Kit; Bruker Daltonik), including n = 793 carbapenemase producers (n = 579 Klebsiella pneumoniae carbapenemase, n = 161 metallo-beta-lactamases, n = 45 OXA-48, and eight isolates harboring two different enzymes), n = 239 carbapenem-resistant noncarbapenemase producers, and n = 275 carbapenem-susceptible strains. The STAR-Carba assay detected 657/661 (99.4%) carbapenemase producers from plate cultures, and 132/132 (100%) from positive blood cultures. Specificity resulted in 100% for carbapenem-susceptible strains, and 91.6% for carbapenem-resistant strains resulted negative for carbapenamase production with the routine methods used in this study. In this study, the MBT STAR-Carba assay proved to be a highly reliable method for the detection of carbapenemase-producing Enterobacterales, regardless of the enzyme family, and from both plate cultures and positive blood culture bottles.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bioensayo/métodos , Enterobacteriaceae Resistentes a los Carbapenémicos/metabolismo , Infecciones por Enterobacteriaceae/microbiología , Enterobacteriaceae/metabolismo , beta-Lactamasas/metabolismo , Antibacterianos/farmacología , Cultivo de Sangre/instrumentación , Carbapenémicos/farmacología , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Sensibilidad y Especificidad
15.
J Med Microbiol ; 69(12): 1398-1404, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33156750

RESUMEN

Introduction. Rapid identification of the causative agent of sepsis is crucial for patient outcomes.Aim. The Sepsityper sample preparation method enables direct microbial identification of positive blood culture samples via matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF MS).Hypothesis/Gap statement. The implementation of the Sepsityper method in the routine practice could represent a fundamental tool to achieve a prompt identification of the causative agent of bloodstream infections, and therefore accelerate the adoption of the proper antibiotic treatment.Methodology. In this study, the novel rapid workflow of the MALDI Biotypr Sepsityper kit (Bruker Daltonik GmbH, Germany) was evaluated using routine samples from a 2-year period (n=6918), and dedicated optimized protocols for the microbial groups that were more difficult to identify were developed. Moreover, the use of the residual bacterial pellet to perform susceptibility testing using different methods (commercial broth microdilution, disc diffusion, gradient diffusion) was investigated.Results. The rapid Sepsityper protocol allowed the identification of 5470/6338 (86.3 %) monomicrobial samples at species level, with very good performance for all of the clinically most significant pathogens (2510/2592 enterobacteria, 631/669 Staphylococcus aureus and 223/246 enterococci were identified). Streptococcus pneumoniae, Bacteroides fragilis and yeasts were the most troublesome to identify, but the application of specific optimized protocols significantly improved their rate of identification (from 14.7-71.5 %, 47.8-89.7 % and 37.1-89.5 %, respectively). Specificity was 100 % (no identification was made for the false-positive samples). Further, the residual pellet proved to be suitable to investigate susceptibility to antimicrobials, enabling us to simplify the workflow and shorten the time to report.Conclusion. The Rapid Sepsityper workflow proved to be a reliable sample preparation method for identification and susceptibility testing directly from positive blood cultures, providing novel approaches for accelerated diagnostics of bloodstream infections.


Asunto(s)
Bacterias/clasificación , Técnicas Bacteriológicas/métodos , Sepsis/microbiología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Bacterias/aislamiento & purificación , Humanos , Sepsis/diagnóstico , Manejo de Especímenes
16.
Front Microbiol ; 11: 589369, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33384668

RESUMEN

Legionella spp. are widespread bacteria in aquatic environments with a growing impact on human health. Between the 61 species, Legionella pneumophila is the most prevalent in human diseases; on the contrary, Legionella non-pneumophila species are less detected in clinical diagnosis or during environmental surveillance due to their slow growth in culture and the absence of specific and rapid diagnostic/analytical tools. Reliable and rapid isolate identification is essential to estimate the source of infection, to undertake containment measures, and to determine clinical treatment. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS), since its introduction into the routine diagnostics of laboratories, represents a widely accepted method for the identification of different bacteria species, described in a few studies on the Legionella clinical and environmental surveillance. The focus of this study was the improvement of MALDI-TOF MS on Legionella non-pneumophila species collected during Legionella nosocomial and community surveillance. Comparative analysis with cultural and mip-gene sequencing results was performed. Moreover, a phylogenetic analysis was carried out to estimate the correlations amongst isolates. MALDI-TOF MS achieved correct species-level identification for 45.0% of the isolates belonging to the Legionella anisa, Legionella rubrilucens, Legionella feeleii, and Legionella jordanis species, displaying a high concordance with the mip-gene sequencing results. In contrast, less reliable identification was found for the remaining 55.0% of the isolates, corresponding to the samples belonging to species not yet included in the database. The phylogenetic analysis showed relevant differences inside the species, regruped in three main clades; among the Legionella anisa clade, a subclade with a divergence of 3.3% from the main clade was observed. Moreover, one isolate, identified as Legionella quinlivanii, displayed a divergence of 3.8% from the corresponding reference strain. However, these findings require supplementary investigation. The results encourage the implementation of MALDI-TOF MS in routine diagnostics and environmental Legionella surveillance, as it displays a reliable and faster identification at the species level, as well as the potential to identify species that are not yet included in the database. Moreover, phylogenetic analysis is a relevant approach to correlate the isolates and to track their spread, especially in unconventional reservoirs, where Legionella prevention is still underestimated.

17.
Clin Mass Spectrom ; 14 Pt A: 3-8, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34917756

RESUMEN

The spread of bacterial resistance has been continuously increasing in the recent decade. Multi-drug resistant (MDR) bacteria now represent one of the most worrisome public health issues, as they seriously complicate the treatment of infections, often leaving few therapeutic options. Enterobacteria and Staphylococcus aureus are among the most common bacterial pathogens, while Bacteroides fragilis is the most frequent anaerobic pathogen. All of these species can cause severe and life-threatening infections, and represent the most frequent causes of antibiotic-resistant healthcare-associated infections worldwide, as they frequently exhibit resistance to various classes of antibiotics. Resistance to carbapenems, the last resort beta-lactam agent, is a particularly threatening problem. Achieved by different mechanisms, leads to total inefficacy of any beta-lactam agent. During the recent years, MALDI-TOF mass spectrometry has become established as the reference method for bacterial identification in routine practice. It has proven to be a reliable and robust method to detect specific peaks in bacterial mass spectra, corresponding to specific resistance markers, enabling the instant detection of resistant isolates in real time during the standard routine identification process. Here, we investigated the performance of the subtyping module of the MALDI Biotyper system (Bruker Daltonik, GmbH) for the instant identification of KPC-producing Klebsiella pneumoniae, methicillin-resistant Staphylococcus aureus, and carbapenemase-producing Bacteroides fragilis during the identification workflow. We evaluated accuracy and potential impact on turnaround time. Furthermore, we investigated the possibility to extend the subtyping for detection of the KPC-specific marker to bacterial species other than K. pneumoniae.

18.
Front Microbiol ; 9: 2854, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30542332

RESUMEN

KPC-producing Klebsiella pneumoniae represents a severe public health concern worldwide. The rapid detection of these isolates is of fundamental importance for the adoption of proper antibiotic treatment and infection control measures, and new applications of MALDI-TOF MS technology fit this purpose. In this study, we present a full MALDI-based approach to detect plasmid-encoded KPC-producing strains, accomplished by the automated detection of a KPC-specific peak (at 11,109 m/z) by a specific algorithm integrated into the MALDI Biotyper system (Bruker Daltonik), and the confirmation of carbapenemase activity by STAR-Carba imipenem hydrolysis assay. A total of 6209 K. pneumoniae isolates from Italy and Germany were investigated for the presence of the KPC-related peak, and a subset of them (n = 243) underwent confirmation of carbapenemase activity by STAR-Carba assay. The novel approach was further applied directly to positive blood culture bottles (n = 204), using the bacterial pellet obtained with Sepsityper kit (Bruker Daltonik). The novel approach enabled a reliable and very fast detection of KPC-producing K. pneumoniae strains, from colonies as well as directly from positive blood cultures. The automated peak detection enabled the instant detection of KPC-producing K. pneumoniae during the routine identification process, with excellent specificity (100%) and a good sensitivity (85.1%). The sensitivity is likely mainly related to the prevalence of the specific plasmid harboring clones among all the KPC-producing circulating strains. STAR-Carba carbapenemase confirmation showed 100% sensitivity and specificity, both from colonies and from positive blood cultures.

19.
JIMD Rep ; 30: 45-52, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26960557

RESUMEN

We sought to establish rapid and specific genotyping methods for G360R mutation and for seven tightly linked markers in the homogentisate dioxygenase gene to address the question of whether G360R is a mutational hot spot or the result of a founder effect, as it has been repeatedly found in alkaptonuric patients from a geographic isolate in Italy.For G360R and single nucleotide polymorphism genotyping, high-resolution melting analysis was performed. Microsatellites were analysed by multiplex PCR and capillary electrophoresis. To investigate the natural history of the G360R mutation, we genotyped markers in 52 controls and in 8 unrelated patients from the UK and USA, who also segregated the G360R mutation, and calculated its age using DMLE+2.3 software.A distinct G360R-bearing haplotype was identified in all patients of Caucasian descent. Estimated mutation age was 545 generations (95% credible set, 402-854), suggesting that G360R arose in an ancestor who lived 8,000-10,000 years BC. Archaeological, historical and demographic data support that a G360R carrier has settled the remote valley where present-day population might have a heterozygote frequency of at least 6%.Given the late health-threatening complications of alkaptonuria and a cure within reach, inhabitants of this isolate would benefit from screening and genetic counselling.

20.
Microb Drug Resist ; 19(3): 212-5, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23336577

RESUMEN

The spread of carbapenemases in Enterobacteriaceae is among the most important issues in the antimicrobial resistance. The rapid and recent diffusion of class A and B carbapenemases determined the need of specific diagnostic tests able to detect with high sensitivity this type of resistance and to discriminate between the different enzymes. The aim of this study was to test two carbapenemase detection assays, the Rosco Synergic and the Hyplex polymerase chain reaction-enzyme-linked immunosorbent assays for screening carbapenemase-producing Enterobacteriaceae. The phenotypic and genotypic tests were evaluated among 108 clinical isolates, including Klebsiella pneumoniae carbapenemase (KPC) (n=50) and metallo-ß-lactamase- (MBL) (n=20), and AmpC- (n=10) producing Enterobacteriaceae. The commercial phenotypic assay showed a high sensitivity performance detecting all KPC and MBL producers, including New Delhi MBL 1 (NDM-1) strains. In addition, the Rosco Synergic assay was able to distinguish specifically between the different mechanisms that confer resistance to carbapenems in Enterobacteriaceae. We also demonstrated that the genotypic test was able to detect all the class A and B carbapenemases showing high sensitivity (100%) and specificity (98%) in a fast and reliable time. Based on these results, both the commercial phenotypic and the genotypic assays could be helpful as confirmatory and discriminatory tests for the detection of class A and class B carbapenemases.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Enterobacteriaceae/efectos de los fármacos , beta-Lactamasas/metabolismo , Farmacorresistencia Bacteriana , Enterobacteriaceae/enzimología , Enterobacteriaceae/aislamiento & purificación , Ensayo de Inmunoadsorción Enzimática , Genotipo , Humanos , Pruebas de Sensibilidad Microbiana , Fenotipo , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA