Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Monit Assess ; 195(10): 1211, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37707663

RESUMEN

The hypothesis that local hypoxia and chlorophyll concentration are spatially tethered to local, sediment-driven nutrient release was examined in a small, nutrient-impacted estuary in the Southern Gulf of St. Lawrence, Canada. Sediment reactor core samples were taken at 10 locations between 0.25 and 100% of the estuary area in spring and fall (2019) and used to estimate nitrogen and phosphate flux. Sediment organic matter, carbonate, percent nitrogen, percent carbon, δ13C, and δ15N were measured from the reactor core stations. Oxygen was recorded continually using oxygen loggers while chlorophyll and salinity were measured bi-weekly. A hydrodynamic model was used to determine water renewal time at each station. The most severe eutrophication effects were in the upper one-fifth of the estuary. There were strong local relationships between sediment biogeochemistry, hypoxia, and chlorophyll metrics but not with water renewal time. Internal nutrient loading represented 65% and 69% of total N loading, and 98% and 89% of total P loading to the estuary in June and September, respectively. Sediment nitrogen flux was highly predictable from a range of local sediment variables that reflect either nutrient content, or organic carbon enrichment in general. Percent nitrogen and percent carbon were highly correlated but sediment P flux was poorly predicted from sediment parameters examined. The highest correlations were with percent nitrogen and percent carbon. These results indicate that incorporating internal nutrient loading into nutrient monitoring programs is a critical next step to improve predictive capacity for eutrophication endpoints and to mitigate nutrient effects.


Asunto(s)
Monitoreo del Ambiente , Estuarios , Humanos , Hipoxia , Oxígeno , Carbono , Clorofila , Nitrógeno , Nutrientes , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA