RESUMEN
Nanocomposites have great potential for the rational synthesis of tailored materials. However, the templating process that transfers the self-organized nanostructure of a block copolymer or other mesophase onto the functional material is by no means trivial, and often involves multiple steps, each of which presents its own chemical and physical challenges. As a result the nanocomposite may not be homogeneous, but can be phase-separated into various components which may feature their own specific microstructure. Here it is shown how scanning microbeam small-angle X-ray scattering (µSAXS) can be used to characterize a thermoset resol/poly(isoprene-block-ethylene oxide) nanocomposite on multiple length scales with respect to homogeneity and microphase separation.
RESUMEN
Crystal size is an important factor in determining the number of diffraction patterns which may be obtained from a protein crystal before severe radiation damage sets in. As crystal dimensions decrease this number is reduced, eventually falling to one, at which point a complete data set must be assembled using data from multiple crystals. When only a single exposure is to be collected from each crystal, the polychromatic Laue technique may be preferable to monochromatic methods owing to its simultaneous recording of a large number of fully recorded reflections per image. To assess the feasibility of solving structures using single Laue images from multiple crystals, data were collected using a 'pink' beam at the CHESS D1 station from groups of lysozyme crystals with dimensions of the order of 20-30 microm mounted on MicroMesh grids. Single-shot Laue data were used for structure determination by molecular replacement and correct solutions were obtained even when as few as five crystals were used.
Asunto(s)
Cristalografía por Rayos X/métodos , Muramidasa/química , Animales , Pollos , Cristalización , Cristalografía por Rayos X/instrumentación , Estudios de Factibilidad , Muramidasa/metabolismo , Conformación ProteicaRESUMEN
A pre-focused X-ray beam at 12 keV and 9 keV has been used to illuminate a single-bounce capillary in order to generate a high-flux X-ray microbeam. The BioCAT undulator X-ray beamline 18ID at the Advanced Photon Source was used to generate the pre-focused beam containing 1.2 x 10(13) photons s(-1) using a sagittal-focusing double-crystal monochromator and a bimorph mirror. The capillary entrance was aligned with the focal point of the pre-focused beam in order to accept the full flux of the undulator beam. Two alignment configurations were tested: (i) where the center of the capillary was aligned with the pre-focused beam (;in-line') and (ii) where one side of the capillary was aligned with the beam (;off-line'). The latter arrangement delivered more flux (3.3 x 10(12) photons s(-1)) and smaller spot sizes (< or =10 microm FWHM in both directions) for a photon flux density of 4.2 x 10(10) photons s(-1) microm(-2). The combination of the beamline main optics with a large-working-distance (approximately 24 mm) capillary used in this experiment makes it suitable for many microprobe fluorescence applications that require a micrometer-size X-ray beam and high flux density. These features are advantageous for biological samples, where typical metal concentrations are in the range of a few ng cm(-2). Micro-XANES experiments are also feasible using this combined optical arrangement.
Asunto(s)
Sincrotrones , Cobre/análisis , Humanos , Hierro/análisis , Masculino , Próstata/química , Próstata/patología , Neoplasias de la Próstata/química , Neoplasias de la Próstata/patología , Sincrotrones/instrumentación , Rayos X , Zinc/análisisRESUMEN
Transmission X-ray mirrors have been fabricated from 300-400 nm-thick low-stress silicon nitride windows of size 0.6 mm x 85 mm. The windows act as a high-pass energy filter at grazing incidence in an X-ray beam for the beam transmitted through the window. The energy cut-off can be selected by adjusting the incidence angle of the transmission mirror, because the energy cut-off is a function of the angle of the window with respect to the beam. With the transmission mirror at the target angle of 0.22 degrees , a 0.3 mm x 0.3 mm X-ray beam was allowed to pass through the mirror with a cut-off energy of 10 keV at the Cornell High Energy Synchrotron Source. The energy cut-off can be adjusted from 8 to 12 keV at an angle of 0.26 degrees to 0.18 degrees , respectively. The observed mirror transmittance was above 80% for a 300 nm-thick film.