Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Anat ; 242(2): 257-276, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36156797

RESUMEN

The forelimb is involved in many behaviours including locomotion. Notably, the humero-ulnar articulation, implicated in the elbow joint, is of particular importance for both mobility and stability. Functional constraints, induced in part by environmental plasticity, are thought to drive an important part of the bone shape as bone directly responds and remodels in response to both muscle and external forces. In this context, the study of subterranean moles is of particular interest. These moles occupy a hard and heavy medium in comparison with air or water, requiring a powerful body structure to shear and shift the soil. Their general morphology is therefore adapted to digging and to their subterranean lifestyle. The various morpho-functional patterns, which drive diverse abilities according to the environment, are likely targets of natural selection and it is, therefore, useful to understand the relationships between the bone shape and their function. Here, we quantify, through 3D geometric morphometric methods, the interspecific variability in the morphology of the ulna and humerus of three Talpa species, including the new species Talpa aquitania, to infer their potential consequence in species digging performance. We also quantify shape covariation and morphological integration between the humerus and the ulna to test whether these bones evolve as a uniform functional unit or as more or less independent modules. Our results show that interspecific anatomical differences in the humerus and ulna exist among the three species. Shape changes are mostly located at the level of joints and muscle attachments. As the species tend to live in allopatry and the fossorial lifestyle induces strong ecological constraints, interspecific variations could be explained by the properties of the environment in which they live, such as the compactness of the soil. Our results also show that the humerus and ulna are highly integrated. The covariation between the humerus and ulna in moles is dominated by variation in the attachment areas and particularly of the attachment areas of shoulder muscles concerning the humerus, which affect the mechanical force deployed during locomotion and digging. This study also highlights that in the new species, T. aquitania, variations in anatomical structure (general shape and joints) exist and are related to the locality of collect of the individuals.


Asunto(s)
Topos , Humanos , Animales , Topos/anatomía & histología , Topos/fisiología , Húmero/anatomía & histología , Cúbito , Extremidad Superior , Suelo
2.
Mol Biol Evol ; 38(6): 2260-2272, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33528505

RESUMEN

In the course of evolution, pecorans (i.e., higher ruminants) developed a remarkable diversity of osseous cranial appendages, collectively referred to as "headgear," which likely share the same origin and genetic basis. However, the nature and function of the genetic determinants underlying their number and position remain elusive. Jacob and other rare populations of sheep and goats are characterized by polyceraty, the presence of more than two horns. Here, we characterize distinct POLYCERATE alleles in each species, both associated with defective HOXD1 function. We show that haploinsufficiency at this locus results in the splitting of horn bud primordia, likely following the abnormal extension of an initial morphogenetic field. These results highlight the key role played by this gene in headgear patterning and illustrate the evolutionary co-option of a gene involved in the early development of bilateria to properly fix the position and number of these distinctive organs of Bovidae.


Asunto(s)
Evolución Biológica , Cabras/genética , Proteínas de Homeodominio/genética , Cuernos , Ovinos/genética , Animales , Biometría , Regulación del Desarrollo de la Expresión Génica , Cabras/embriología , Cabras/metabolismo , Proteínas de Homeodominio/metabolismo , Masculino , Ratones Transgénicos , Mutación , Ovinos/embriología , Ovinos/metabolismo
3.
Proc Biol Sci ; 289(1975): 20220147, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35582797

RESUMEN

Dogs are among the most variable species today, but little is known about the morphological variability in the early phases of their history. The Neolithic transition to farming may have resulted in an early morphological diversification as a result of changes in the anthropic environment or intentional selection on specific morphologies. Here, we describe the variability and modularity in mandible form by comparing 525 dog mandibles from European archaeological sites ranging from 8100 to 3000 cal. BC to a reference sample of modern dogs, wolves, and dingoes. We use three-dimensional geometric morphometrics to quantify the form of complete and fragmented mandibles. We demonstrate that an important morphological variability already existed before the Bronze Age in Europe, yet the largest, smallest, most brachycephalic or dolichocephalic extant dogs have no equivalent in the archaeological sample, resulting in a lower variation compared to modern relatives. The covariation between the anterior and posterior parts of the mandible is lower in archaeological dogs, suggesting a low degree of intentional human selection in early periods. The mandible of modern and ancient dogs differs in functionally important areas, possibly reflecting differences in diet, competition, or the implication of ancient dogs in hunting or defence.


Asunto(s)
Lobos , Agricultura , Animales , Arqueología , Perros , Europa (Continente) , Historia Antigua , Mandíbula/anatomía & histología
4.
J Anat ; 241(2): 297-336, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35249216

RESUMEN

Sauropodomorph dinosaurs include the largest terrestrial animals that ever lived on Earth. The early representatives of this clade were, however, relatively small and partially to totally bipedal, conversely to the gigantic and quadrupedal sauropods. Although the sauropod bauplan is well defined, notably by the acquisition of columnar limbs, the evolutionary sequence leading to its emergence remains debated. Here, we aim to tackle this evolutionary episode by investigating shape variation in the six limb long bones for the first time using three-dimensional geometric morphometrics. The morphological features of the forelimb zeugopod bones related to the sauropod bauplan tend to appear abruptly, whereas the pattern is more gradual for the hindlimb zeugopod bones. The stylopod bones tend to show the same pattern as their respective zeugopods. The abrupt emergence of the sauropod forelimb questions the locomotor abilities of non-sauropodan sauropodomorphs inferred as quadrupeds. Features characterizing sauropods tend to corroborate a view of their locomotion mainly based on stylopod retraction. An allometric investigation of the shape variation in accordance with size highlight differences in hindlimb bone allometries between the sauropods and the non-sauropodan sauropodomorphs. These differences notably correspond to an unexpected robustness decrease trend in the sauropod hindlimb zeugopod. In addition to forelimb bones that appear to be proportionally more gracile than in non-sauropodan sauropodomorphs, sauropods may have relied on limb architecture and features related to the size increase, rather than general robustness, to deal with the role of weight-bearing.


Asunto(s)
Dinosaurios , Gigantismo , Animales , Evolución Biológica , Huesos/anatomía & histología , Dinosaurios/anatomía & histología , Fósiles , Filogenia
5.
J Anat ; 241(3): 765-775, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35661351

RESUMEN

The acquisition of habitual bipedal locomotion, which resulted in numerous modifications of the skeleton was a crucial step in hominid evolution. However, our understanding of the inherited skeletal modifications versus those acquired while learning to walk remains limited. We here present data derived from X-rays and CT scans of quadrupedal adult humans and compare the morphology of the vertebral column, pelvis and femur to that of a bipedal brother. We show how a skeleton forged by natural selection for bipedal locomotion is modified when used to walk quadrupedally. The quadrupedal brother is characterised by the absence of femoral obliquity, a very high anteversion angle of the femoral neck, a very high collo-diaphyseal angle and a very reduced lordosis. The differences in the pelvis are more subtle and complex, yet of functional importance. The modification of the ischial spines to an ischial ridge and the perfectly rounded shape of the sacral curvature are two unique features that can be directly attributed to a quadrupedal posture and locomotion. We propose a functional interpretation of these two exceptional modifications. Unexpectedly, the quadrupedal brother and sister show a greater angle of pelvic incidence compared to their bipedal brother, a trait previously shown to increase with learning to walk in bipedal subjects. Moreover, the evolution from an occasional towards a permanent bipedality has given rise to a functional association between the angle of pelvic incidence and the lumbar curvature, with high angles of incidence and greater lumbar curvature promoting stability during bipedal locomotion. The quadrupedal brother and sister with a high angle of incidence and a very reduced lordosis thus show a complete decoupling of this complex functional integration.


Asunto(s)
Hominidae , Lordosis , Adulto , Animales , Femenino , Humanos , Locomoción , Masculino , Sacro , Caminata
6.
Laterality ; 27(1): 101-126, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34743652

RESUMEN

Lateralization of hand use in primates has been extensively studied in a variety of contexts, and starts to be investigated in other species and organs in order to understand the evolution of the laterality according to different tasks. In elephants, the orientation of the movements of the trunk has been observed mainly in feeding and social contexts, in free conditions. However, little is known about the influence of task complexity on trunk laterality. In this study, we compared the lateralization of the trunk in two conditions: standardized and free. We offered granules to six African elephants on each side of an opened trapdoor to create a constraining environment and reported the different behaviours employed and their orientation. In addition, we observed the same individuals in free conditions and noted the lateralization of the use of their trunk. We revealed a common right side preference in all our elephants, both in standardized and free conditions. This side bias was stronger in our constraining task, adding evidence for the task complexity theory. We finally described laterality in new behaviours in the literature on elephants, such as pinching, gathering or exploration with the trunk.


Asunto(s)
Elefantes , Animales , Lateralidad Funcional , Movimiento , Proyectos Piloto
7.
J Anat ; 238(4): 886-904, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33210307

RESUMEN

Limb long bones are essential to an animal's locomotion, and are thus expected to be heavily influenced by factors such as mass or habitat. Because they are often the only organs preserved in the fossil record, understanding their adaptive trends is key to reconstructing the paleobiology of fossil taxa. In this regard, the Bovidae has always been a prized group of study. This family is extremely diverse in terms of both mass and habitat, and it is expected that their bones will possess adaptations to both factors. Here, we present the first 3D geometric morphometric study focusing on bovid limb long bones. We used anatomical landmarks as well as curve and surface sliding semi-landmarks to accurately describe the stylopod and zeugopod bones. We included 50 species from ten of the twelve currently recognized tribes of bovids, ranging from 4.6 to 725 kg, and living in open plains, forests, mountains, or anywhere in-between. Shape data were correlated with the mean mass of the species and its habitat, even when taking into account the phylogenetic history of our sample. Bones pertaining to heavy species are more robust, adapted for a better repartition of stronger forces. Articulations are especially affected, being proportionally much larger in heavier species. Muscle insertion areas are unevenly affected. Insertion areas of muscles implied in body support and propulsion show a strong increase in their robustness when compared to insertion areas of muscles acting on the limb mostly when it is off the ground. Habitat influences the shape of the humerus, the radius-ulna, and the femur, but not of the tibia, whether the phylogeny is taken into account or not. Specific habitats tend to be associated with particular features on the bones. Articulations are proportionally wider in open-habitat species, and the insertion areas of muscles involved in limb extension and propulsion are wider, reflecting the fact that open habitat species are more cursorial and rely on fast running to avoid predators. Forest and mountain species generally present similar adaptations for increased manoeuvrability, such as a round femoral head, and generally have more gracile bones.


Asunto(s)
Adaptación Biológica , Artiodáctilos/anatomía & histología , Huesos/anatomía & histología , Animales , Ecosistema
8.
J Anat ; 238(5): 1128-1142, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33345316

RESUMEN

The aardvark is the last living Tubulidentata, an order of afrotherian mammals. Afrotheria is supported strongly by molecular analyses, yet sparingly by morphological characters. Moreover, the biology of the aardvark remains incompletely known. The inner ear, and its ontogeny in particular, has not been studied in details yet, though it bears key ecomorphological characters and phylogenetical signal. The aim of this study is to decipher and discuss the ontogenetic development of the different areas of the inner ear of Orycteropus afer. We focused in particular on their relative size and morphological rates of development. Specimens were scanned with 3D imaging techniques. 3D and 2D geometric morphometrics coupled with qualitative descriptions of the petrosal ossification allowed us to evidence several stages through development. Based on our sample, the cochlea is the first structure of the inner ear to reach adult size, but it is the last one to acquire its adult morphology close to parturition. In contrast, after a delayed growth spurt, the semicircular canals reach their mature morphology before the cochlea, concomitantly with the increase of petrosal ossification. The ontogeny of the aardvark inner ear shows similarities with that of other species, but the apex of the cochlea presents some autapomorphies. This work constitutes a first step in the study of the ontogeny of this sensorial organ in Afrotheria.


Asunto(s)
Evolución Biológica , Oído Interno/anatomía & histología , Euterios/anatomía & histología , Animales , Cóclea/anatomía & histología , Canales Semicirculares/anatomía & histología
9.
J Anat ; 239(6): 1287-1299, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34291452

RESUMEN

The vertebrate skeleton is composed of articulated bones. Most of the articulations are classically described using mechanical joints, except the intervertebral joint. The aim of this study was to identify a joint model with the same mechanical features as the cervical joints. On the neck vertebrae, six articular surfaces participate in the joint: the cranial part of the centrum and the facets of the two prezygapophyses of a vertebra articulate on the caudal part of the centrum and the two articular facets of the postzygapophyses of the previous vertebra. We used the intervertebral joints of the birds neck to identify the mechanical joint representing intervertebral linkage. This link was described in the literature as a joint allowing two or three rotations and no translation. These features correspond to the rotule à doigt (RAD) joint, a ball and socket joint with a pin. We compared the RAD joint to the postaxial intervertebral joints of the avian neck and found it a suitable model to determine the geometrical features involved in the joint mobility. The difference in the angles of virtual axes linking the geometrical center of the centrum to the zygapophysis surfaces determines the mean dorsoventral flexion of the joint. It also helps to limit longitudinal rotation. The orientation of the zygapophysis surfaces determines the range of motion in both dorsoventral and lateral flexion. The overall system prevents dislocation. The model was validated on 13 joints of a vulture neck and 11 joints of a swallow neck and on one joint (C6-C7) in each of three mammal species: the wolf (Canis lupus), mole (Talpa europaea), and human (Homo sapiens). The RAD mechanical joint was found in all vertebral articulations. This validation of the model on different species shows that the RAD intervertebral joint model makes it possible to extract the parameters that guide and limit the mobility of the cervical spine from the complex shape of the vertebrae and to compare them in interspecific studies.


Asunto(s)
Disco Intervertebral , Articulación Cigapofisaria , Animales , Fenómenos Biomecánicos , Aves , Vértebras Cervicales , Mamíferos , Rango del Movimiento Articular
10.
J Exp Biol ; 224(Pt 5)2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33619173

RESUMEN

The jaw system in canids is essential for defence and prey acquisition. However, how it varies in wild species in comparison with domestic species remains poorly understood, yet is of interest in terms of understanding the impact of artificial selection. Here, we explored the variability and interrelationships between the upper and lower jaws, muscle architecture and bite force in the red fox (Vulpes vulpes). We performed dissections and used 3D geometric morphometric approaches to quantify jaw shape in 68 foxes. We used a static lever model and bite force estimates were compared with in vivo measurements of 10 silver foxes. Our results show strong relationships exist between cranial and mandible shape, and between cranial or mandible shape on the one hand and muscles or estimated bite force on the other hand, confirming the strong integration of the bony and muscular components of the jaw system. These strong relationships are strongly driven by size. The functional links between shape and estimated bite force are stronger for the mandible, which probably reflects its greater specialisation towards biting. We then compared our results with data previously obtained for dogs (Canis lupus familiaris) to investigate the effect of domestication. Foxes and dogs differ in skull shape and muscle physiological cross-sectional area (PCSA). They show a similar amount of morphological variation in muscle PCSA, but foxes show lower variation in cranial and mandible shape. Interestingly, the patterns of covariation are not stronger in foxes than in dogs, suggesting that domestication did not lead to a disruption of the functional links of the jaw system.


Asunto(s)
Fuerza de la Mordida , Zorros , Animales , Perros , Maxilares , Músculos Masticadores , Músculos
11.
Am J Phys Anthropol ; 175(3): 546-558, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33483958

RESUMEN

OBJECTIVES: In many primates, the greater proportion of climbing and suspensory behaviors in the juvenile repertoire likely necessitates good grasping capacities. Here, we tested whether very young individuals show near-maximal levels of grasping strength, and whether such an early onset of grasping performance could be explained by ontogenetic variability in the morphology of the limbs in baboons. MATERIAL AND METHODS: We quantified a performance trait, hand pull strength, at the juvenile and adult stages in a cross-sectional sample of 15 olive baboons (Papio anubis). We also quantified bone dimensions (i.e., lengths, widths, and heights) of the fore- (n = 25) and hind limb (n = 21) elements based on osteological collections covering the whole development of olive baboons. RESULTS: One-year old individuals demonstrated very high pull strengths (i.e., 200% of the adult performance, relative to body mass), that are consistent with relatively wider phalanges and digit joints in juveniles. The mature proportions and shape of the forelimb elements appeared only at full adulthood (i.e., ≥4.5 years), whereas the mature hind limb proportions and shape were observed much earlier during development. DISCUSSION: These changes in limb performance and morphology across ontogeny may be explained with regard to behavioral transitions that olive baboons experience during their development. Our findings highlight the effect of infant clinging to mother, an often-neglected feature when discussing the origins of grasping in primates. The differences in growth patterns, we found between the forelimb and the hind limb further illustrate their different functional roles, having likely evolved under different ecological pressures (manipulation and locomotion, respectively).


Asunto(s)
Locomoción , Papio anubis , Animales , Estudios Transversales , Extremidad Inferior , Papio
12.
J Anat ; 237(4): 704-726, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32519813

RESUMEN

The appendicular skeleton of tetrapods is a particularly integrated structure due to the shared developmental origin or similar functional constraints exerted on its elements. Among these constraints, body mass is considered strongly to influence its integration but its effect on shape covariation has rarely been addressed in mammals, especially in heavy taxa. Here, we propose to explore the covariation patterns of the long bones in heavy animals and their link to body mass. We investigate the five modern rhinoceros species, which display an important range of bodyweight. We used a 3D geometric morphometric approach to describe the shape covariation of the six bones composing the stylopodium and zeugopodium both among and within species. Our results indicate that the appendicular skeleton of modern rhinos is a strongly integrated structure. At the interspecific level, the shape covariation is roughly similar between all pairs of bones and mainly concerns the muscular insertions related to powerful flexion and extension movements. The forelimb integration appears higher and more related to body mass than that of the hind limb, suggesting a specialization for weight support. The integration of the stylopodium elements does not seem to relate to body mass in our sample, which suggests a greater effect of shared developmental factors. Conversely, the covariation of the zeugopodium bones seems more associated with body mass, particularly for the radius-ulna pair. The fibula appears poorly integrated with other bones, especially within non-Rhinoceros species, which may represent a case of parcellation due to a functional dissociation between the hind limb bones. The exploration of the integration patterns at the intraspecific level also highlights a more prominent effect of age over individual body mass on shape covariation within C. simum. This study lends support to previous hypotheses indicating a link between high body mass and high integration level.


Asunto(s)
Evolución Biológica , Peso Corporal/fisiología , Huesos/anatomía & histología , Miembro Anterior/anatomía & histología , Miembro Posterior/anatomía & histología , Perisodáctilos/anatomía & histología , Animales , Huesos/fisiología , Miembro Anterior/fisiología , Miembro Posterior/fisiología , Perisodáctilos/fisiología
13.
J Exp Biol ; 223(Pt 16)2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32587065

RESUMEN

Previous studies based on two-dimensional methods have suggested that the great morphological variability of cranial shape in domestic dogs has impacted bite performance. Here, we used a three-dimensional biomechanical model based on dissection data to estimate the bite force of 47 dogs of various breeds at several bite points and gape angles. In vivo bite force for three Belgian shepherd dogs was used to validate our model. We then used three-dimensional geometric morphometrics to investigate the drivers of bite force variation and to describe the relationships between the overall shape of the jaws and bite force. The model output shows that bite force is rather variable in dogs and that dogs bite harder on the molar teeth and at lower gape angles. Half of the bite force is determined by the temporal muscle. Bite force also increased with size, and brachycephalic dogs showed higher bite forces for their size than mesocephalic dogs. We obtained significant covariation between the shape of the upper or lower jaw and absolute or residual bite force. Our results demonstrate that domestication has not resulted in a disruption of the functional links in the jaw system in dogs and that mandible shape is a good predictor of bite force.


Asunto(s)
Fuerza de la Mordida , Maxilares , Animales , Fenómenos Biomecánicos , Perros , Mandíbula , Músculos Masticadores , Diente Molar , Cráneo
14.
BMC Evol Biol ; 19(1): 188, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31615394

RESUMEN

BACKGROUND: Hybridization has been widely practiced in plant and animal breeding as a means to enhance the quality and fitness of the organisms. In domestic equids, this hybrid vigor takes the form of improved physical and physiological characteristics, notably for strength or endurance. Because the offspring of horse and donkey is generally sterile, this widely recognized vigor is expressed in the first generation (F1). However, in the absence of recombination between the two parental genomes, F1 hybrids can be expected to be phenotypically intermediate between their parents which could potentially restrict the possibilities of an increase in overall fitness. In this study, we examine the morphology of the main limb bones of domestic horses, donkeys and their hybrids to investigate the phenotypic impact of hybridization on the locomotor system. We explore bone shape variation and covariation to gain insights into the morphological and functional expressions of the hybrid vigor commonly described in domestic equids. RESULTS: Our data reveal the occurrence of transgressive effects on several bones in the F1 generation. The patterns of morphological integration further demonstrate that the developmental processes producing covariation are not disrupted by hybridization, contrary to functional ones. CONCLUSIONS: These results suggest that an increase in overall fitness could be related to more flexibility in shape change in hybrids, except for the main forelimb long bones of which the morphology is strongly driven by muscle interactions. More broadly, this study illustrates the interest of investigating not only bone shape variation but also underlying processes, in order to contribute to better understanding how developmental and functional mechanisms are affected by hybridization.


Asunto(s)
Animales Domésticos/genética , Huesos/anatomía & histología , Caballos/genética , Vigor Híbrido/genética , Hibridación Genética , Animales , Cruzamiento , Análisis de los Mínimos Cuadrados , Modelos Teóricos , Análisis de Componente Principal , Tamaño de la Muestra
15.
J Exp Biol ; 222(Pt 16)2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31371404

RESUMEN

Flying insects frequently experience wing damage during their life. Such irreversible alterations of wing shape affect flight performance and ultimately fitness. Insects have been shown to compensate for wing damage through various behavioural adjustments, but the importance of damage location over the wings has scarcely been studied. Using natural variation in wing damage, we tested how the loss of different wing parts affects flight performance. We quantified flight performance in two species of large butterflies, Morpho helenor and Morpho achilles, caught in the wild and displaying large variation in the extent and location of wing damage. We artificially generated more severe wing damage in our sample to contrast natural versus higher magnitude wing loss. Wing shape alteration across our sample was quantified using geometric morphometrics to test the effect of different damage distributions on flight performance. Our results show that impaired flight performance clearly depends on damage location over the wings, pointing to a relative importance of different wing parts for flight. A deteriorated forewing leading edge most critically affected flight performance, specifically decreasing flight speed and the proportion of gliding flight. In contrast, the most frequent natural damage, deteriorated wing margin, had no detectable effect on flight behaviour. Damage located on the hindwings - although having a limited effect on flight - was associated with reduced flight height, suggesting that the forewings and hindwings play different roles in butterfly flight. By contrasting harmless and deleterious consequences of various types of wing damage, our study highlights different selective regimes acting on morphological variations of butterfly wings.


Asunto(s)
Evolución Biológica , Mariposas Diurnas/anatomía & histología , Alas de Animales/anatomía & histología , Animales , Femenino , Vuelo Animal , Masculino
16.
New Phytol ; 218(2): 859-872, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29468683

RESUMEN

Morphometrics, the assignment of quantities to biological shapes, is a powerful tool to address taxonomic, evolutionary, functional and developmental questions. We propose a novel method for shape quantification of complex modular architecture in thalloid plants, whose extremely reduced morphologies, combined with the lack of a formal framework for thallus description, have long rendered taxonomic and evolutionary studies extremely challenging. Using graph theory, thalli are described as hierarchical series of nodes and edges, allowing for accurate, homologous and repeatable measurements of widths, lengths and angles. The computer program MorphoSnake was developed to extract the skeleton and contours of a thallus and automatically acquire, at each level of organization, width, length, angle and sinuosity measurements. Through the quantification of leaf architecture in Hymenophyllum ferns (Polypodiopsida) and a fully worked example of integrative taxonomy in the taxonomically challenging thalloid liverwort genus Riccardia, we show that MorphoSnake is applicable to all ramified plants. This new possibility of acquiring large numbers of quantitative traits in plants with complex modular architectures opens new perspectives of applications, from the development of rapid species identification tools to evolutionary analyses of adaptive plasticity.


Asunto(s)
Plantas/anatomía & histología , Hepatophyta/anatomía & histología , Hojas de la Planta/anatomía & histología , Análisis de Componente Principal , Programas Informáticos , Especificidad de la Especie
17.
J Anat ; 232(5): 836-849, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29411354

RESUMEN

Long bone inner structure and cross-sectional geometry display a strong functional signal, leading to convergences, and are widely analyzed in comparative anatomy at small and large taxonomic scales. Long bone microanatomical studies have essentially been conducted on transverse sections but also on a few longitudinal ones. Recent studies highlighted the interest in analyzing variations of the inner structure along the diaphysis using a qualitative as well as a quantitative approach. With the development of microtomography, it has become possible to study three-dimensional (3D) bone microanatomy and, in more detail, the form-function relationships of these features. This study focused on the selection of quantitative parameters to describe in detail the cross-sectional shape changes and distribution of the osseous tissue along the diaphysis. Two-dimensional (2D) virtual transverse sections were also performed in the two usual reference planes and results were compared with those obtained based on the whole diaphysis analysis. The sample consisted in 14 humeri and 14 femora of various mammalian taxa that are essentially terrestrial. Comparative quantitative analyses between different datasets made it possible to highlight the parameters that are strongly impacted by size and phylogeny and the redundant ones, and thus to estimate their relevance for use in form-function analyses. The analysis illustrated that results based on 2D transverse sections are similar for both sectional planes; thus if a strong bias exists when mixing sections from the two reference planes in the same analysis, it would not problematic to use either one plane or the other in comparative studies. However, this may no longer hold for taxa showing a much stronger variation in bone microstructure along the diaphysis. Finally, the analysis demonstrated the significant contribution of the parameters describing variations along the diaphysis, and thus the interest in performing 3D analyses; this should be even more fruitful for heterogeneous diaphyses. In addition, covariation analyses showed that there is a strong interest in removing the size effect to access the differences in the microstructure of the humerus and femur. This methodological study provides a reference for future quantitative analyses on long bone inner structure and should make it possible, through a detailed knowledge of each descriptive parameter, to better interpret results from the multivariate analyses associated with these studies. This will have direct implications for studies in vertebrate anatomy, but also in paleontology and anthropology.


Asunto(s)
Diáfisis/anatomía & histología , Mamíferos/anatomía & histología , Variación Anatómica , Animales , Diáfisis/diagnóstico por imagen , Fémur/anatomía & histología , Fémur/diagnóstico por imagen , Húmero/anatomía & histología , Húmero/diagnóstico por imagen , Imagenología Tridimensional , Filogenia , Análisis de Componente Principal
18.
J Anat ; 232(4): 657-673, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29315551

RESUMEN

The relationships between the different component parts of organisms, such as the sharing of common development or function, produce a coordinated variation between the different traits. This morphological integration contributes to drive or constrain morphological variation and thus impacts phenotypic diversification. Artificial selection is known to contribute significantly to phenotypic diversification of domestic species. However, little attention has been paid to its potential impact on integration patterns. This study explores the patterns of integration in the limb bones of different horse breeds, using 3D geometric morphometrics. The domestic horse is known to have been strongly impacted by artificial selection, and was often selected for functional traits. Our results confirm that morphological integration among bones within the same limb is strong and apparently partly produced by functional factors. Most importantly, they reveal that artificial selection, which led to the diversification of domestic horses, impacts covariation patterns. The influence of selection on the patterns of covariation varies along the limbs and modulates bone shape, likely due to a differential ligament or muscle development. These results highlight that, in addition to not being constrained by a strong morphological integration, artificial selection has modulated the covariation patterns according to the locomotor specificities of the breeds. More broadly, it illustrates the interest in studying how micro-evolutionary processes impact covariation patterns and consequently contribute to morphological diversification of domestic species.


Asunto(s)
Cruzamiento , Caballos/anatomía & histología , Caballos/crecimiento & desarrollo , Animales , Biodiversidad , Tamaño Corporal , Huesos/anatomía & histología , Extremidades/anatomía & histología , Extremidades/crecimiento & desarrollo , Femenino , Ligamentos/crecimiento & desarrollo , Ligamentos/fisiología , Locomoción/fisiología , Masculino , Desarrollo de Músculos/fisiología , Fenotipo
19.
J Exp Biol ; 221(Pt 13)2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29987053

RESUMEN

Phenotypic plasticity has been proposed as a mechanism that facilitates the success of biological invasions. In order to test the hypothesis of an adaptive role for plasticity in invasions, particular attention should be paid to the relationship between the focal plastic trait, the environmental stimulus and the functional importance of the trait. The Drosophila wing is particularly amenable to experimental studies of phenotypic plasticity. Wing morphology is known for its plastic variation under different experimental temperatures, but this plasticity has rarely been investigated in a functional context of flight. Here, we investigate the effect of temperature on wing morphology and flight in the invasive pest species Drosophila suzukii Although the rapid invasion of both Europe and North America was most likely facilitated by human activities, D. suzukii is also expected to disperse actively. By quantifying wing morphology and individual flight trajectories of flies raised under different temperatures, we tested whether (1) invasive populations of D. suzukii show higher phenotypic plasticity than their native counterparts, and (2) wing plasticity affects flight parameters. Developmental temperature was found to affect both wing morphology and flight parameters (in particular speed and acceleration), leaving open the possibility of an adaptive value for wing plasticity. Our results show no difference in phenotypic plasticity between invasive and native populations, rejecting a role for wing plasticity in the invasion success.


Asunto(s)
Adaptación Fisiológica/fisiología , Drosophila/crecimiento & desarrollo , Vuelo Animal/fisiología , Temperatura , Alas de Animales/crecimiento & desarrollo , Animales , Especies Introducidas , Masculino
20.
Proc Biol Sci ; 284(1864)2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-28978726

RESUMEN

Organisms are organized into suites of anatomical structures that typically covary when developmentally or functionally related, and this morphological integration plays a determinant role in evolutionary processes. Artificial selection on domestic species causes strong morphological changes over short time spans, frequently resulting in a wide and exaggerated phenotypic diversity. This raises the question of whether integration constrains the morphological diversification of domestic species and how natural and artificial selection may impact integration patterns. Here, we study the morphological integration in the appendicular skeleton of domestic horses and donkeys, using three-dimensional geometric morphometrics on 75 skeletons. Our results indicate that a strong integration is inherited from developmental mechanisms which interact with functional factors. This strong integration reveals a specialization in the locomotion of domestic equids, partly for running abilities. We show that the integration is stronger in horses than in donkeys, probably because of a greater degree of specialization and predictability of their locomotion. Thus, the constraints imposed by integration are weak enough to allow important morphological changes and the phenotypic diversification of domestic species.


Asunto(s)
Huesos/anatomía & histología , Equidae/anatomía & histología , Miembro Anterior/anatomía & histología , Miembro Posterior/anatomía & histología , Locomoción , Selección Genética , Animales , Evolución Biológica , Cruzamiento , Femenino , Caballos/anatomía & histología , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA