Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Clin Immunol ; 36(4): 397-405, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27059040

RESUMEN

WHIM syndrome is an autosomal dominant immunodeficiency disease caused by mutations affecting the carboxy-terminus of CXCR4. To characterize novel genetic causes of the syndrome, we recruited a pediatric patient with possible WHIM syndrome, performed CXCR4 gene sequencing and compared his clinical phenotype and CXCR4 tail amino acid sequences with other patients with WHIM syndrome carrying CXCR4 (R334X) mutations. We identified and biochemically characterized a heterozygous 5 base pair deletion (nucleotides 986-990) located in the portion of the open reading frame (ORF) of CXCR4 that encodes the carboxy-terminal domain of the receptor. This CXCR4 (L329fs) mutation causes a frame-shift at codon 329 resulting in replacement of the final 24 predicted amino acids of the receptor with 12 missense amino acids. Like previously reported WHIM mutations, this frame-shift mutation CXCR4 (L329fs) decreased receptor downregulation in response to the CXCR4 agonist CXCL12 in patient PBMCs as well as in transfected K562 and HEK 293 cells, but increased calcium flux responses in K562 cells to CXCL12 stimulation. Thus, CXCR4 (L329fs) appears to be a de novo autosomal dominant frame-shift gain-of-function mutation that like other carboxy-terminus mutations causes WHIM syndrome. The same CXCR4 (L329fs) frame-shift variant has been reported to occur in tumor cells from a patient with Waldenström's Macroglobulemia (WM), but is caused by a distinct genetic mechanism: insertion of a single nucleotide in the L329 codon, providing additional evidence that the carboxy-terminus of CXCR4 is a genetic hotspot for mutation.


Asunto(s)
Síndromes de Inmunodeficiencia/genética , Receptores CXCR4/genética , Macroglobulinemia de Waldenström/genética , Verrugas/genética , Preescolar , Células HEK293 , Humanos , Células K562 , Masculino , Mutación , Neutropenia/genética , Enfermedades de Inmunodeficiencia Primaria
2.
J Pediatr ; 160(4): 679-683.e2, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22050868

RESUMEN

OBJECTIVE: To delineate the phenotypic and molecular spectrum of patients with a syndromic variant of severe congenital neutropenia (SCN) due to mutations in the gene encoding glucose-6-phosphatase catalytic subunit 3 (G6PC3). STUDY DESIGN: Patients with syndromic SCN were characterized for associated malformations and referred to us for G6PC3 mutational analysis. RESULTS: In a cohort of 31 patients with syndromic SCN, we identified 16 patients with G6PC3 deficiency including 11 patients with novel biallelic mutations. We show that nonhematologic features of G6PC3 deficiency are good predictive indicators for mutations in G6PC3. Additionally, we demonstrate genetic variability in this disease and define novel features such as growth hormone deficiency, genital malformations, disrupted bone remodeling, and abnormalities of the integument. G6PC3 mutations may be associated with hydronephrosis or facial dysmorphism. The risk of transition to myelodysplastic syndrome/acute myeloid leukemia may be lower than in other genetically defined SCN subgroups. CONCLUSIONS: The phenotypic and molecular spectrum in G6PC3 deficiency is wider than previously appreciated. The risk of transition to myelodysplastic syndrome or acute myeloid leukemia may be lower in G6PC3 deficiency compared with other subgroups of SCN.


Asunto(s)
Glucosa-6-Fosfatasa/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Neutropenia/congénito , Adolescente , Niño , Síndromes Congénitos de Insuficiencia de la Médula Ósea , Femenino , Genotipo , Humanos , Lactante , Masculino , Neutropenia/genética , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA