Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
RNA ; 30(6): 662-679, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38443115

RESUMEN

Despite being predicted to lack coding potential, cytoplasmic long noncoding (lnc)RNAs can associate with ribosomes. However, the landscape and biological relevance of lncRNA translation remain poorly studied. In yeast, cytoplasmic Xrn1-sensitive unstable transcripts (XUTs) are targeted by nonsense-mediated mRNA decay (NMD), suggesting a translation-dependent degradation process. Here, we report that XUTs are pervasively translated, which impacts their decay. We show that XUTs globally accumulate upon translation elongation inhibition, but not when initial ribosome loading is impaired. Ribo-seq confirmed ribosomes binding to XUTs and identified ribosome-associated 5'-proximal small ORFs. Mechanistically, the NMD-sensitivity of XUTs mainly depends on the 3'-untranslated region length. Finally, we show that the peptide resulting from the translation of an NMD-sensitive XUT reporter exists in NMD-competent cells. Our work highlights the role of translation in the posttranscriptional metabolism of XUTs. We propose that XUT-derived peptides could be exposed to natural selection, while NMD restricts XUT levels.


Asunto(s)
Exorribonucleasas , Degradación de ARNm Mediada por Codón sin Sentido , Biosíntesis de Proteínas , ARN Largo no Codificante , Ribosomas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ribosomas/metabolismo , Ribosomas/genética , Regiones no Traducidas 3' , Sistemas de Lectura Abierta , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estabilidad del ARN
2.
Chembiochem ; 25(7): e202300768, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38353030

RESUMEN

Growing cells in a biomimetic environment is critical for tissue engineering as well as for studying the cell biology underlying disease mechanisms. To this aim a range of 3D matrices have been developed, from hydrogels to decellularized matrices. They need to mimic the extracellular matrix to ensure the optimal growth and function of cells. Electrospinning has gained in popularity due to its capacity to individually tune chemistry and mechanical properties and as such influence cell attachment, differentiation or maturation. Polyacrylonitrile (PAN) derived electrospun fibres scaffolds have shown exciting potential due to reports of mechanical tunability and biocompatibility. Building on previous work we fabricate here a range of PAN fibre scaffolds with different concentrations of carbon nanotubes. We characterize them in-depth in respect to their structure, surface chemistry and mechanical properties, using scanning electron microscopy, image processing, ultramicrotomic transmission electron microscopy, x-ray nanotomography, infrared spectroscopy, atomic force microscopy and nanoindentation. Together the data demonstrate this approach to enable finetuning the mechanical properties, while keeping the structure and chemistry unaltered and hence offering ideal properties for comparative studies of the cellular mechanobiology. Finally, we confirm the biocompatibility of the scaffolds using primary rat cardiomyocytes, vascular smooth muscle (A7r5) and myoblast (C2C12) cell lines.


Asunto(s)
Nanotubos de Carbono , Andamios del Tejido , Animales , Ratas , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Resinas Acrílicas
3.
Plant Cell ; 33(11): 3487-3512, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34459915

RESUMEN

In angiosperms, the α/ß hydrolase DWARF14 (D14), along with the F-box protein MORE AXILLARY GROWTH2 (MAX2), perceives strigolactones (SL) to regulate developmental processes. The key SL biosynthetic enzyme CAROTENOID CLEAVAGE DIOXYGENASE8 (CCD8) is present in the moss Physcomitrium patens, and PpCCD8-derived compounds regulate moss extension. The PpMAX2 homolog is not involved in the SL response, but 13 PpKAI2LIKE (PpKAI2L) genes homologous to the D14 ancestral paralog KARRIKIN INSENSITIVE2 (KAI2) encode candidate SL receptors. In Arabidopsis thaliana, AtKAI2 perceives karrikins and the elusive endogenous KAI2-Ligand (KL). Here, germination assays of the parasitic plant Phelipanche ramosa suggested that PpCCD8-derived compounds are likely noncanonical SLs. (+)-GR24 SL analog is a good mimic for PpCCD8-derived compounds in P. patens, while the effects of its enantiomer (-)-GR24, a KL mimic in angiosperms, are minimal. Interaction and binding assays of seven PpKAI2L proteins pointed to the stereoselectivity toward (-)-GR24 for a single clade of PpKAI2L (eu-KAI2). Enzyme assays highlighted the peculiar behavior of PpKAI2L-H. Phenotypic characterization of Ppkai2l mutants showed that eu-KAI2 genes are not involved in the perception of PpCCD8-derived compounds but act in a PpMAX2-dependent pathway. In contrast, mutations in PpKAI2L-G, and -J genes abolished the response to the (+)-GR24 enantiomer, suggesting that PpKAI2L-G, and -J proteins are receptors for moss SLs.


Asunto(s)
Bryopsida/genética , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Lactonas/metabolismo , Orobanchaceae/fisiología , Proteínas de Plantas/genética , Bryopsida/metabolismo , Bryopsida/parasitología , Proteínas de Plantas/metabolismo
4.
Genes Dev ; 30(18): 2119-2132, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27688401

RESUMEN

Mediator is a large coregulator complex conserved from yeast to humans and involved in many human diseases, including cancers. Together with general transcription factors, it stimulates preinitiation complex (PIC) formation and activates RNA polymerase II (Pol II) transcription. In this study, we analyzed how Mediator acts in PIC assembly using in vivo, in vitro, and in silico approaches. We revealed an essential function of the Mediator middle module exerted through its Med10 subunit, implicating a key interaction between Mediator and TFIIB. We showed that this Mediator-TFIIB link has a global role on PIC assembly genome-wide. Moreover, the amplitude of Mediator's effect on PIC formation is gene-dependent and is related to the promoter architecture in terms of TATA elements, nucleosome occupancy, and dynamics. This study thus provides mechanistic insights into the coordinated function of Mediator and TFIIB in PIC assembly in different chromatin contexts.


Asunto(s)
Complejo Mediador/metabolismo , Regiones Promotoras Genéticas/fisiología , Saccharomyces cerevisiae/fisiología , Factor de Transcripción TFIIB/metabolismo , Cromatina/metabolismo , Complejo Mediador/genética , Mutación , Unión Proteica/genética , Multimerización de Proteína/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Molecules ; 29(11)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38893391

RESUMEN

This review aims to gather the current state of the art on the encapsulation methods using alginate as the main polymeric material in order to produce hydrogels ranging from the microscopic to macroscopic sizes. The use of alginates as an encapsulation material is of growing interest, as it is fully bio-based, bio-compatible and bio-degradable. The field of application of alginate encapsulation is also extremely broad, and there is no doubt it will become even broader in the near future considering the societal demand for sustainable materials in technological applications. In this review, alginate's main properties and gelification mechanisms, as well as some factors influencing this mechanism, such as the nature of the reticulation cations, are first investigated. Then, the capacity of alginate gels to release matter in a controlled way, from small molecules to micrometric compounds, is reported and discussed. The existing techniques used to produce alginates beads, from the laboratory scale to the industrial one, are further described, with a consideration of the pros and cons with each techniques. Finally, two examples of applications of alginate materials are highlighted as representative case studies.

6.
Nucleic Acids Res ; 49(17): 9851-9869, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34469577

RESUMEN

The activation of eukaryotic DNA replication origins needs to be strictly controlled at multiple steps in order to faithfully duplicate the genome and to maintain its stability. How the checkpoint recovery and adaptation protein Polo-like kinase 1 (Plk1) regulates the firing of replication origins during non-challenged S phase remained an open question. Using DNA fiber analysis, we show that immunodepletion of Plk1 in the Xenopus in vitro system decreases replication fork density and initiation frequency. Numerical analyses suggest that Plk1 reduces the overall probability and synchrony of origin firing. We used quantitative chromatin proteomics and co-immunoprecipitations to demonstrate that Plk1 interacts with firing factors MTBP/Treslin/TopBP1 as well as with Rif1, a known regulator of replication timing. Phosphopeptide analysis by LC/MS/MS shows that the C-terminal domain of Rif1, which is necessary for its repressive action on origins through protein phosphatase 1 (PP1), can be phosphorylated in vitro by Plk1 on S2058 in its PP1 binding site. The phosphomimetic S2058D mutant interrupts the Rif1-PP1 interaction and modulates DNA replication. Collectively, our study provides molecular insights into how Plk1 regulates the spatio-temporal replication program and suggests that Plk1 controls origin activation at the level of large chromatin domains in vertebrates.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Proteínas Serina-Treonina Quinasas/metabolismo , Origen de Réplica , Proteínas de Xenopus/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Cromatina/metabolismo , Proteoma/metabolismo , Fase S/genética , Xenopus laevis
7.
Nucleic Acids Res ; 49(19): 11145-11166, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34634819

RESUMEN

Mitochondrial mRNAs encode key subunits of the oxidative phosphorylation complexes that produce energy for the cell. In Saccharomyces cerevisiae, mitochondrial translation is under the control of translational activators, specific to each mRNA. In Schizosaccharomyces pombe, which more closely resembles the human system by its mitochondrial DNA structure and physiology, most translational activators appear to be either lacking, or recruited for post-translational functions. By combining bioinformatics, genetic and biochemical approaches we identified two interacting factors, Cbp7 and Cbp8, controlling Cytb production in S. pombe. We show that their absence affects cytb mRNA stability and impairs the detection of the Cytb protein. We further identified two classes of Cbp7/Cbp8 partners and showed that they modulated Cytb or Cox1 synthesis. First, two isoforms of bS1m, a protein of the small mitoribosomal subunit, that appear mutually exclusive and confer translational specificity. Second, a complex of four proteins dedicated to Cox1 synthesis, which includes an RNA helicase that interacts with the mitochondrial ribosome. Our results suggest that S. pombe contains, in addition to complexes of translational activators, a heterogeneous population of mitochondrial ribosomes that could specifically modulate translation depending on the mRNA translated, in order to optimally balance the production of different respiratory complex subunits.


Asunto(s)
Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Mitocondrias/genética , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mitocondrial/genética , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Biología Computacional/métodos , Citocromos b/genética , Citocromos b/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Regulación Fúngica de la Expresión Génica , Mitocondrias/metabolismo , Fosforilación Oxidativa , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo , ARN Mitocondrial/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
8.
Molecules ; 28(16)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37630385

RESUMEN

Polysulfone (PSF) is one of the most used polymers for water treatment membranes, but its intrinsic hydrophobicity can be detrimental to the membranes' performances. By modifying a membrane's surface, it is possible to adapt its physicochemical properties and thus tune the membrane's hydrophilicity or porosity, which can achieve improved permeability and antifouling efficiency. Atomic layer deposition (ALD) stands as a distinctive technology offering exceedingly even and uniform layers of coatings, like oxides that cover the surfaces of objects with three-dimensional (3D) shapes, porous structures, and particles. In the context of this study, the focus was on titanium dioxide (TiO2), zinc oxide (ZnO), and alumina (Al2O3), which were deposited on polysulfone hollow fiber (HF) membranes via ALD using TiCl4, diethyl zinc (DEZ), and trimethylamine (TMA), respectively, and H2O as precursors. The morphology and mechanical properties of membranes were changed without damaging their performances. The deposition was confirmed mainly by energy-dispersive X-ray spectroscopy (EDX). All depositions offered great performances with a maintained permeability and BSA retention and a 20 to 40° lower water contact angle (WCA) than the raw PSF HF membrane. The deposition of TiO2 offered the best results, showing an enhancement of 50% for the water permeability and 20% for the fouling resistance of the PSF HF membranes.

9.
Molecules ; 28(22)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38005261

RESUMEN

Catalytic transfer hydrogenation has emerged as a pivotal chemical process with transformative potential in various industries. This review highlights the significance of catalytic transfer hydrogenation, a reaction that facilitates the transfer of hydrogen from one molecule to another, using a distinct molecule as the hydrogen source in the presence of a catalyst. Unlike conventional direct hydrogenation, catalytic transfer hydrogenation offers numerous advantages, such as enhanced safety, cost-effective hydrogen donors, byproduct recyclability, catalyst accessibility, and the potential for catalytic asymmetric transfer hydrogenation, particularly with chiral ligands. Moreover, the diverse range of hydrogen donor molecules utilized in this reaction have been explored, shedding light on their unique properties and their impact on catalytic systems and the mechanism elucidation of some reactions. Alcohols such as methanol and isopropanol are prominent hydrogen donors, demonstrating remarkable efficacy in various reductions. Formic acid offers irreversible hydrogenation, preventing the occurrence of reverse reactions, and is extensively utilized in chiral compound synthesis. Unconventional donors such as 1,4-cyclohexadiene and glycerol have shown a good efficiency in reducing unsaturated compounds, with glycerol additionally serving as a green solvent in some transformations. The compatibility of these donors with various catalysts, substrates, and reaction conditions were all discussed. Furthermore, this paper outlines future trends which include the utilization of biomass-derived hydrogen donors, the exploration of hydrogen storage materials such as metal-organic frameworks (MOFs), catalyst development for enhanced activity and recyclability, and the utilization of eco-friendly solvents such as glycerol and ionic liquids. Innovative heating methods, diverse base materials, and continued research into catalyst-hydrogen donor interactions are aimed to shape the future of catalytic transfer hydrogenation, enhancing its selectivity and efficiency across various industries and applications.

10.
Biophys J ; 121(13): 2514-2525, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35659635

RESUMEN

High pressure (HP) is a particularly powerful tool to study protein folding/unfolding, revealing subtle structural rearrangements. Bovine ß-lactoglobulin (BLG), a protein of interest in food science, exhibits a strong propensity to bind various bioactive molecules. We probed the effects of the binding of biliverdin (BV), a tetrapyrrole linear chromophore, on the stability of BLG under pressure, by combining in situ HP small-angle neutron scattering (SANS) and HP-UV absorption spectroscopy. Although BV induces a slight destabilization of BLG during HP-induced unfolding, a ligand excess strongly prevents BLG oligomerization. Moreover, at SANS resolution, an excess of BV induces the complete recovery of the protein "native" 3D structure after HP removal, despite the presence of the BV covalently bound adduct. Mass spectrometry highlights the crucial role of cysteine residues in the competitive and protective effects of BV during pressure denaturation of BLG through SH/S-S exchange.


Asunto(s)
Biliverdina , Lactoglobulinas , Animales , Bovinos , Cisteína , Lactoglobulinas/química , Desplegamiento Proteico
11.
New Phytol ; 234(3): 1003-1017, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35119708

RESUMEN

Strigolactones (SLs) are plant hormones and important signalling molecules required to promote arbuscular mycorrhizal (AM) symbiosis. While in plants an α/ß-hydrolase, DWARF14 (D14), was shown to act as a receptor that binds and cleaves SLs, the fungal receptor for SLs is unknown. Since AM fungi are currently not genetically tractable, in this study, we used the fungal pathogen Cryphonectria parasitica, for which gene deletion protocols exist, as a model, as we have previously shown that it responds to SLs. By means of computational, biochemical and genetic analyses, we identified a D14 structural homologue, CpD14. Molecular homology modelling and docking support the prediction that CpD14 interacts with and hydrolyses SLs. The recombinant CpD14 protein shows α/ß hydrolytic activity in vitro against the SLs synthetic analogue GR24; its enzymatic activity requires an intact Ser/His/Asp catalytic triad. CpD14 expression in the d14-1 loss-of-function Arabidopsis thaliana line did not rescue the plant mutant phenotype. However, gene inactivation by knockout homologous recombination reduced fungal sensitivity to SLs. These results indicate that CpD14 is involved in SLs responses in C. parasitica and strengthen the role of SLs as multifunctional molecules acting in plant-microbe interactions.


Asunto(s)
Ascomicetos , Proteínas de Plantas , Ascomicetos/metabolismo , Compuestos Heterocíclicos con 3 Anillos , Lactonas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo
12.
Cell Mol Neurobiol ; 42(6): 1909-1920, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33740172

RESUMEN

Glioblastoma multiforme (GBM) is account for 70% of all primary malignancies of the central nervous system. The median survival of human patients after treatment is around 15 months. There are several biological targets which have been reported that can be pursued using ligands with varied structures to treat this disease. In our group, we have developed several ligands that target a wide range of proteins involved in anticancer effects, such as histone deacetylase (HDACs), G protein-coupled estrogen receptor 1 (GPER), estrogen receptor-beta (ERß) and NADPH oxidase (NOX), that were screened on bidimensional (2D) and tridimensional (3D) GBM stem cells like (GSC). Our results show that some HDAC inhibitors show antiproliferative properties at 21-32 µM. These results suggest that in this 3D culture, HDACs could be the most relevant targets that are modulated to induce the antiproliferative effects that require in the future further experimental studies.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular , Glioblastoma/patología , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas , Humanos , Ligandos
13.
Proc Natl Acad Sci U S A ; 115(12): 3018-3023, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29507244

RESUMEN

Some codons of the genetic code can be read not only by cognate, but also by near-cognate tRNAs. This flexibility is thought to be conferred mainly by a mismatch between the third base of the codon and the first of the anticodon (the so-called "wobble" position). However, this simplistic explanation underestimates the importance of nucleotide modifications in the decoding process. Using a system in which only near-cognate tRNAs can decode a specific codon, we investigated the role of six modifications of the anticodon, or adjacent nucleotides, of the tRNAs specific for Tyr, Gln, Lys, Trp, Cys, and Arg in Saccharomyces cerevisiae. Modifications almost systematically rendered these tRNAs able to act as near-cognate tRNAs at stop codons, even though they involve noncanonical base pairs, without markedly affecting their ability to decode cognate or near-cognate sense codons. These findings reveal an important effect of modifications to tRNA decoding with implications for understanding the flexibility of the genetic code.


Asunto(s)
ADN/genética , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Emparejamiento Base , Secuencia de Bases , Codón , Regulación Fúngica de la Expresión Génica , Código Genético , ARN de Transferencia/genética
14.
Molecules ; 26(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34641469

RESUMEN

Given the limited access to freshwater compared to seawater, a growing interest surrounds the direct seawater electrolysis to produce hydrogen. However, we currently lack efficient electrocatalysts to selectively perform the oxygen evolution reaction (OER) over the oxidation of the chloride ions that are the main components of seawater. In this contribution, we report an engineering strategy to synthesize heterogeneous electrocatalysts by the simultaneous formation of separate chalcogenides of nickel (NiSx, x = 0, 2/3, 8/9, and 4/3) and cobalt (CoSx, x = 0 and 8/9) onto a carbon-nitrogen-sulfur nanostructured network. Specifically, the oxidative aniline polymerization in the presence of metallic cations was combined with the calcination to regulate the separate formation of various self-supported phases in order to target the multifunctional applicability as both hydrogen evolution reaction (HER) and OER in a simulated alkaline seawater. The OER's metric current densities of 10 and 100 mA cm-2 were achieved at the bimetallic for only 1.60 and 1.63 VRHE, respectively. This high-performance was maintained in the electrolysis with a starting voltage of 1.6 V and satisfactory stability at 100 mA over 17 h. Our findings validate a high selectivity for OER of ~100%, which outperforms the previously reported data of 87-95%.

15.
Microbiology (Reading) ; 166(8): 759-776, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32490790

RESUMEN

Bacterial lipoproteins are secreted proteins that are post-translationally lipidated. Following synthesis, preprolipoproteins are transported through the cytoplasmic membrane via the Sec or Tat translocon. As they exit the transport machinery, they are recognized by a phosphatidylglycerol::prolipoprotein diacylglyceryl transferase (Lgt), which converts them to prolipoproteins by adding a diacylglyceryl group to the sulfhydryl side chain of the invariant Cys+1 residue. Lipoprotein signal peptidase (LspA or signal peptidase II) subsequently cleaves the signal peptide, liberating the α-amino group of Cys+1, which can eventually be further modified. Here, we identified the lgt and lspA genes from Corynebacterium glutamicum and found that they are unique but not essential. We found that Lgt is necessary for the acylation and membrane anchoring of two model lipoproteins expressed in this species: MusE, a C. glutamicum maltose-binding lipoprotein, and LppX, a Mycobacterium tuberculosis lipoprotein. However, Lgt is not required for these proteins' signal peptide cleavage, or for LppX glycosylation. Taken together, these data show that in C. glutamicum the association of some lipoproteins with membranes through the covalent attachment of a lipid moiety is not essential for further post-translational modification.


Asunto(s)
Corynebacterium glutamicum/enzimología , Lipoproteínas/metabolismo , Transferasas/metabolismo , Acilación , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/crecimiento & desarrollo , Corynebacterium glutamicum/metabolismo , Prueba de Complementación Genética , Maltosa/metabolismo , Mutación , Mycobacterium tuberculosis/genética , Procesamiento Proteico-Postraduccional , Señales de Clasificación de Proteína , Transferasas/genética
16.
Org Biomol Chem ; 17(5): 1090-1096, 2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30632589

RESUMEN

The first non-natural derivative of the rare d-glucose-2-phosphate (G2P), namely glucose-2-(O-lactic acid phosphate) (G2LP), has been synthesized. When used as sole carbon source, G2LP enables bacterial growth of the plant pathogenic strain Agrobacterium fabrum C58 (formerly referred to as Agrobacterium tumefaciens). X-ray crystallography and affinity measurements investigations reveal that G2LP binds the periplasmic binding protein (PBP) AccA similarly to the natural compounds and with the same affinity. Moreover, enzymatic assays show that it is able to serve as substrate of the phosphodiesterase AccF. The properties found for G2LP demonstrate that the very unusual glucose-2-phosphoryl residue, present in G2LP, can be used as structural feature for designing non-natural systems fully compatible with the Acc cascade of A. fabrum.


Asunto(s)
Agrobacterium/química , Proteínas Bacterianas/metabolismo , Ésteres/síntesis química , Glucofosfatos/síntesis química , Proteínas de Unión Periplasmáticas/metabolismo , Agrobacterium/crecimiento & desarrollo , Cristalografía por Rayos X , Ésteres/química , Ésteres/metabolismo , Glucofosfatos/química , Glucofosfatos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Especificidad por Sustrato
17.
J Biol Chem ; 292(28): 11937-11950, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28559279

RESUMEN

Ubiquinone (UQ), also referred to as coenzyme Q, is a widespread lipophilic molecule in both prokaryotes and eukaryotes in which it primarily acts as an electron carrier. Eleven proteins are known to participate in UQ biosynthesis in Escherichia coli, and we recently demonstrated that UQ biosynthesis requires additional, nonenzymatic factors, some of which are still unknown. Here, we report on the identification of a bacterial gene, yqiC, which is required for efficient UQ biosynthesis, and which we have renamed ubiK Using several methods, we demonstrated that the UbiK protein forms a complex with the C-terminal part of UbiJ, another UQ biogenesis factor we previously identified. We found that both proteins are likely to contribute to global UQ biosynthesis rather than to a specific biosynthetic step, because both ubiK and ubiJ mutants accumulated octaprenylphenol, an early intermediate of the UQ biosynthetic pathway. Interestingly, we found that both proteins are dispensable for UQ biosynthesis under anaerobiosis, even though they were expressed in the absence of oxygen. We also provide evidence that the UbiK-UbiJ complex interacts with palmitoleic acid, a major lipid in E. coli Last, in Salmonella enterica, ubiK was required for proliferation in macrophages and virulence in mice. We conclude that although the role of the UbiK-UbiJ complex remains unknown, our results support the hypothesis that UbiK is an accessory factor of Ubi enzymes and facilitates UQ biosynthesis by acting as an assembly factor, a targeting factor, or both.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Macrófagos/microbiología , Modelos Moleculares , Salmonella enterica/metabolismo , Ubiquinona/biosíntesis , Animales , Células 3T3 BALB , Carga Bacteriana , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Ácidos Grasos Monoinsaturados/metabolismo , Femenino , Eliminación de Gen , Humanos , Péptidos y Proteínas de Señalización Intracelular , Macrófagos/inmunología , Ratones , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Células RAW 264.7 , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Infecciones por Salmonella/microbiología , Salmonella enterica/crecimiento & desarrollo , Salmonella enterica/aislamiento & purificación , Salmonella enterica/patogenicidad , Bazo/microbiología , Terminología como Asunto , Virulencia
18.
Nat Chem Biol ; 12(10): 787-794, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27479744

RESUMEN

Strigolactone plant hormones control plant architecture and are key players in both symbiotic and parasitic interactions. They contain an ABC tricyclic lactone connected to a butenolide group, the D ring. The DWARF14 (D14) strigolactone receptor belongs to the superfamily of α/ß-hydrolases, and is known to hydrolyze the bond between the ABC lactone and the D ring. Here we characterized the binding and catalytic functions of RAMOSUS3 (RMS3), the pea (Pisum sativum) ortholog of rice (Oryza sativa) D14 strigolactone receptor. Using new profluorescent probes with strigolactone-like bioactivity, we found that RMS3 acts as a single-turnover enzyme that explains its apparent low enzymatic rate. We demonstrated the formation of a covalent RMS3-D-ring complex, essential for bioactivity, in which the D ring was attached to histidine 247 of the catalytic triad. These results reveal an undescribed mechanism of plant hormone reception in which the receptor performs an irreversible enzymatic reaction to generate its own ligand.


Asunto(s)
4-Butirolactona/análogos & derivados , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Histidina/metabolismo , Lactonas/metabolismo , Pisum sativum/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , 4-Butirolactona/química , 4-Butirolactona/metabolismo , Histidina/química , Ligandos , Estructura Molecular , Pisum sativum/enzimología , Reguladores del Crecimiento de las Plantas/química , Proteínas de Plantas/química
19.
Chemphyschem ; 18(19): 2573-2605, 2017 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-28732139

RESUMEN

Ubiquitous electrochemistry is expected to play a major role for reliable energy supply as well as for production of sustainable fuels and chemicals. The fundamental understanding of organics-based electrocatalysis in alkaline media at the solid-liquid interface involves complex mechanisms and performance descriptors (from the electrolyte and reaction intermediates), which undermine the roads towards advance and breakthroughs. Here, we review and diagnose recently designed strategies for the electrochemical conversion of organics into electricity and/or higher-value chemicals. To tune the mysterious workings of nanocatalysts in electrochemical devices, we examine the guiding principles by which the performance of a particular electrode material is governed, thus highlighting various tactics for the development of synthesis methods for nanomaterials with specific properties. We end by examining the production of chemicals by using electrochemical methods, from selective oxidation to reduction reactions. The intricate relationship between electrode and selectivity encourages both of the communities of electrocatalysis and organic synthesis to move forward together toward the renaissance of electrosynthesis methods.

20.
Phys Chem Chem Phys ; 19(41): 28014-28027, 2017 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-29034944

RESUMEN

Understanding the mechanisms of protein oligomerization and aggregation is a major concern for biotechnology and medical purposes. However, significant challenges remain in determining the mechanism of formation of these superstructures and the environmental factors that can precisely modulate them. Notably the role that a functional ligand plays in the process of protein aggregation is largely unexplored. We herein address these issues with an original flavin-dependent RNA methyltransferase (TrmFO) used as a protein model since this protein employs a complex set of cofactors and ligands for catalysis. Here, we show that TrmFO carries an unstable protein structure that can partially mis-unfold leading to either formation of irregular and nonfunctional soluble oligomers endowed with hyper-thermal stability or large amorphous aggregates in the presence of salts. Mutagenesis confirmed that this peculiarity is an intrinsic property of a polypeptide and it is independent of the flavin coenzyme. Structural characterization and kinetic studies identified several regions of the protein that enjoy conformational changes and more particularly pinpointed the N-terminal subdomain as being a key element in the mechanisms of oligomerization and aggregation. Only stabilization of this region via tRNA suppresses these aberrant protein states. Although protein chaperones emerged as major actors against aggregation, our study emphasizes that other powerful mechanisms exist such as the stabilizing effect of functional assemblies that provide an additional layer of protection against the instability of the proteome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA