Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Anal Chim Acta ; 1136: 157-167, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33081940

RESUMEN

A solid-phase extraction methodology using a MIL-101(Fe)/PVDF membrane was proposed as a useful alternative for the simultaneous determination of naproxen, diclofenac, and ibuprofen, three anti-inflammatory drugs (NSAIDs), in wastewater samples by HPLC-CCD analysis. The MIL-101(Fe) was prepared by a rapid microwave-assisted method and supported in a polymeric PVDF membrane. The prepared material was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FT-IR). The factors that affect the extraction of the NSAIDs using the MIL-101(Fe)/PVDF membrane as the sample volume, the solution pH and the elution solvent were studied in detail. The selected conditions were 50 mL of sample solution at pH 3 and 5 mL of methanol: acetone (30:70, v v-1) acidified with formic acid at 2% as elution solvent. The analytical method was linear with determination coefficients (r2 ≥ 0.998) in the calibration ranges from 2 to 100 ng mL-1 for naproxen, 20-200 ng mL-1 for diclofenac, and 100-300 ng mL-1 for ibuprofen. The intra and inter-day precision (repeatability and reproducibility, respectively) of the method (RSD%, n = 5) were lower than 4.8% and 7.1%, respectively. The accuracy reported as recovery percentages ranged from 82 to 118%, and the limits of detection were between 1.8 and 32.3 ng mL-1. Moreover, MIL-101(Fe)/PVDF membrane exhibited improved adsorption efficiency compared to that of its analog MIL-101(Cr)/PVDF and the pristine PVDF membranes, obtaining in an easy and rapid (60 min) way a low-cost and low-toxic adsorbent with excellent stability, reusability, mechanic resistance, and simple operation which shows excellent performance.


Asunto(s)
Estructuras Metalorgánicas , Preparaciones Farmacéuticas , Adsorción , Hierro , Reproducibilidad de los Resultados , Extracción en Fase Sólida , Espectroscopía Infrarroja por Transformada de Fourier
2.
Sci Rep ; 9(1): 20122, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882935

RESUMEN

Many prokaryotes encode protein-based encapsulin nanocompartments, including anaerobic ammonium oxidizing (anammox) bacteria. This study expands the list of known anammox encapsulin systems from freshwater species to include the marine genus Scalindua. Two novel systems, identified in "Candidatus Scalindua rubra" and "Candidatus Scalindua sp. SCAELEC01 167" possess different architectures than previously studied freshwater anammox encapsulins. Characterization of the S. rubra encapsulin confirms that it can self-assemble to form compartments when heterologously expressed in Escherichia coli. BLASTp and HMMER searches of additional genomes and metagenomes spanning a range of environments returned 26 additional novel encapsulins, including a freshwater anammox encapsulin identified in "Candidatus Brocadia caroliniensis". Phylogenetic analysis comparing these 28 new encapsulin sequences and cargo to that of their closest known relatives shows that encapsulins cluster by cargo protein type and therefore likely evolved together. Lastly, prokaryotic encapsulins may be more common and diverse than previously thought. Through searching a small sample size of all public metagenomes and genomes, many new encapsulin systems were unearthed by this study. This suggests that many additional encapsulins likely remain to be discovered.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Microbiología Ambiental , Orden Génico , Sitios Genéticos , Geografía , Metagenoma , Metagenómica/métodos , Filogenia , Multimerización de Proteína , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA