Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Phys Chem Chem Phys ; 26(27): 18799-18807, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38938190

RESUMEN

A methodology based on molecular dynamics simulations is presented to determine the chemical potential of thiol self-assembled monolayers on a gold surface. The thiol de-solvation and then the monolayer formation are described by thermodynamic integration with a gradual decoupling of one molecule from the environment, with the necessary corrections to account for standard state changes. The procedure is applied both to physisorbed undissociated thiol molecules and to chemisorbed dissociated thiyl radicals, considering in the latter case the possible chemical potential of the produced hydrogen. We considered monolayers formed by either 7-mercapto-4-methylcoumarin (MMC) or 3-mercapto-propanoic acid (MPA) on a flat gold surface: the free energy profiles with respect to the monolayer density are consistent with a transition from a very stable lying-down phase at low densities to a standing-up phase at higher densities, as expected. The maximum densities of thermodynamically stable monolayers are compared to experimental measures performed with reference-free grazing-incidence X-ray fluorescence (RF-GIXRF) on the same systems, finding a better agreement in the case of chemisorbed thiyl radicals.

2.
Chemistry ; 28(72): e202202771, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36302695

RESUMEN

A designed N-heterocyclic carbene (NHC) catalyst was covalently anchored on a range of mesoporous and hierarchical supports, to study the influence of pore size in the benzoin condensation of furfural. The structural and spectroscopic characteristics of the anchored catalysts were investigated, also with the help of molecular dynamics simulations, in order to rationalize the degree of stability and recyclability of the heterogenized organocatalysts. Quantitative yields (99 %) and complete recyclability were maintained after several cycles, vindicating the design rationale.


Asunto(s)
Benzoína , Furaldehído , Benzoína/química , Bencimidazoles , Simulación de Dinámica Molecular , Catálisis
3.
Phys Chem Chem Phys ; 24(36): 22083-22090, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36073159

RESUMEN

Self-assembled monolayers (SAM) of 7-mercapto-4-methylcoumarin (MMC) on a flat gold surface were studied by molecular dynamics (MD) simulations, reference-free grazing incidence X-ray fluorescence (GIXRF) and X-ray photoelectron spectroscopy (XPS), to determine the maximum monolayer density and to investigate the nature of the molecule/surface interface. In particular, the protonation state of the sulfur atom upon adsorption was analyzed, since some recent literature presented evidence for physisorbed thiols (preserving the S-H bond), unlike the common picture of chemisorbed thiyls (losing the hydrogen). MD with a specifically tailored force field was used to simulate either thiol or thiyl monolayers with increasing number of molecules, to determine the maximum dynamically stable densities. This result was refined by computing the monolayer chemical potential as a function of the density with the bennet acceptance ratio method, based again on MD simulations. The monolayer density was also measured with GIXRF, which provided the absolute quantification of the number of sulfur atoms in a dense self-assembled monolayer (SAM) on flat gold surfaces. The sulfur core level binding energies in the same monolayers were measured by XPS, fitting the recorded spectra with the binding energies proposed in the literature for free or adsorbed thiols and thiyls, to get insight on the nature of the molecular species present in the layer. The comparison of theoretical and experimental SAM densities, and the XPS analysis strongly support the picture of a monolayer formed by chemisorbed, dissociated thiyls.

4.
Molecules ; 26(19)2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34641536

RESUMEN

Two pentadentate ligands built on the 2-aminomethylpiperidine structure and bearing two tertiary amino and three oxygen donors (three carboxylates in the case of AMPTA and two carboxylates and one phenolate for AMPDA-HB) were developed for Mn(II) complexation. Equilibrium studies on the ligands and the Mn(II) complexes were carried out using pH potentiometry, 1H-NMR spectroscopy and UV-vis spectrophotometry. The Mn complexes that were formed by the two ligands were more stable than the Mn complexes of other pentadentate ligands but with a lower pMn than Mn(EDTA) and Mn(CDTA) (pMn for Mn(AMPTA) = 7.89 and for Mn(AMPDA-HB) = 7.07). 1H and 17O-NMR relaxometric studies showed that the two Mn-complexes were q = 1 with a relaxivity value of 3.3 mM-1 s-1 for Mn(AMPTA) and 3.4 mM-1 s-1 for Mn(AMPDA-HB) at 20 MHz and 298 K. Finally, the geometries of the two complexes were optimized at the DFT level, finding an octahedral coordination environment around the Mn2+ ion, and MD simulations were performed to monitor the distance between the Mn2+ ion and the oxygen of the coordinated water molecule to estimate its residence time, which was in good agreement with that determined using the 17O NMR data.

5.
Phys Chem Chem Phys ; 22(36): 20573-20587, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32893270

RESUMEN

We describe theoretically the structure and properties of layered lead organohalide perovskites, considering purely bi-dimensional (2D) PbI4 layers, and quasi-2D systems where the inorganic layers are formed by more than one lead iodide sheet. The intercalating organic dications were designed to have low lying virtual orbitals (LUMO), so as to induce in the perovskite the appearance of virtual bands, localized in the organic layer, either close to the inorganic conduction band bottom or valence band top, or in some cases in the middle of the inorganic band gap. Such a feature is quite uncommon for this class of materials, and deserves attention since it allows one to tune the effective band gap of the material, possibly leading to the absorption of visible light and influencing the optical properties deeply. We discuss the effect of functional groups on the organic cations, and of the different symmetries used in geometry optimizations: a careful analysis of the contributions to the dispersion curves and band gaps was performed. The charge carrier mobility is also discussed, computing the conductivity over relaxation time and the effective masses for all the systems, with particular attention to the features related to the unusual organic intra-gap bands. All the structures were optimized at the DFT level, with inclusion of dispersion effects; dispersion curves were computed with full relativistic potentials, and the band gaps corrected for long range coulombic effects at the GW level. A semiempirical approach, based on the integration of charge carrier group velocities over a dense grid of k-points, was used to compute the conductivities and effective masses.

6.
Chem Soc Rev ; 47(15): 5684-5739, 2018 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-30014075

RESUMEN

Understanding the structure-property relationship of solids is of utmost relevance for efficient chemical processes and technological applications in industries. This contribution reviews the concept of coupling three well-known characterization techniques (solid-state NMR, FT-IR and computational methods) for the study of solid state materials which possess 2D and 3D architectures and discusses the way it will benefit the scientific communities. It highlights the most fundamental and applied aspects of the proactive combined approach strategies to gather information at a molecular level. The integrated approach involving multiple spectroscopic and computational methods allows achieving an in-depth understanding of the surface, interfacial and confined space processes that are beneficial for the establishment of structure-property relationships. The role of ssNMR/FT-IR spectroscopic properties of probe molecules in monitoring the strength and distribution of catalytic active sites and their accessibility at the porous/layered surface is discussed. Both experimental and theoretical aspects will be considered by reporting relevant examples. This review also identifies and discusses the progress, challenges and future prospects in the field of synthesis and applications of layered and porous solids.

7.
Molecules ; 24(5)2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30823360

RESUMEN

The organic⁻inorganic hybrid materials have attracted great attention due to their improved or unusual properties that open promising applications in different areas such as optics, electronics, energy, environment, biology, medicine and heterogeneous catalysis. Different types of silicodactyl platforms grafted on silica inorganic supports can be used to synthesize hybrid materials. A careful evaluation of the dactyly of the organic precursors, normally alkoxysilanes, and of the type of interaction with the inorganic supports is presented. In fact, depending on the hydrophilicity of the silica surface (e.g., number and density of surface silanols) as well as on the grafting conditions, the hydrolysis and condensation reaction of the silylated moieties can involve only one or two out of three alkoxysilane groups. The influence of silicodactyly in the preparation of organic-inorganic silica-based hybrids is studied by TGA, 29Si, ¹H and 13C solid-state NMR and FTIR spectroscopies, with the support of Molecular Dynamics calculations. Computational studies are used to forecast the influence of the different grafting configurations on the tendency of the silane to stick on the inorganic surface.


Asunto(s)
Simulación de Dinámica Molecular , Silanos/química , Dióxido de Silicio/química , Espectroscopía de Resonancia Magnética , Espectroscopía Infrarroja por Transformada de Fourier
8.
Chemphyschem ; 18(7): 839-849, 2017 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-28029206

RESUMEN

The interaction of water molecules with the surface of hybrid silica-based mesoporous materials is studied by 29 Si, 1 H and 13 C solid-state NMR and IR spectroscopy, with the support of ab initio calculations. The surface of aminopropyl-grafted mesoporous silica nanoparticles is studied in the dehydrated state and upon interaction with controlled doses of water vapour. Former investigations described the interactions between aminopropyl and residual SiOH groups; the present study shows the presence of hydrogen-bonded species (SiOH to NH2 ) and weakly interacting "free" aminopropyl chains with restricted mobility, together with a small amount of protonated NH3+ groups. The concentration of the last-named species increased upon interaction with water, and this indicates reversible and fast proton exchange from water molecules to a fraction of the amino groups. Herein, this is discussed and explained for the first time, by a combination of experimental and theoretical approaches.

9.
Chemphyschem ; 18(17): 2374-2380, 2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28654191

RESUMEN

Determination of the molar absorption coefficients of the CH3 bending mode at ν˜ =1380 cm-1 (ϵ1380 ) of n-hexane adsorbed from the gas phase on two different dealuminated zeolites is derived by a combination of IR spectroscopy and microgravimetric analysis. High-silica zeolite Y (HSZ-Y) and zeolite ZSM-5 (with SiO2 /Al2 O3 ratios of 200 and 280, respectively) with different textural and surface features are selected to evaluate the effect of the pore structure and architecture on the value of ϵ1380 of the adsorbed n-hexane. Experimental data indicate that the molecule experiences a different adsorption environment inside zeolites; thus resulting in a significant change of the dipole moment and very different ϵ1380 values: (0.278±0.018) cm µmol-1 for HSZ-Y and (0.491±0.032) cm µmol-1 for ZSM-5. Experimental data are also supported by computational modeling, which confirms the effect of different matrices on the IR absorption intensity. This study reveals that the use of probe molecules for quantitative measurements of surface sites has to be judiciously adopted, especially if adsorption occurs in the restricted spaces of microporous materials.

10.
J Chem Phys ; 146(23): 234703, 2017 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-28641434

RESUMEN

This article describes the structure and the electronic properties of a series of layered perovskites of a general formula (A+)2(SnX4)-2 where X = I, Br and A+ is an organic cation, either formamidinium, 1-methylimidazolium, or phenylethylammonium. For each system, two conformations are considered, with eclipsed or staggered stacking of the adjacent inorganic layers. Geometry optimizations are performed at the density functional theory level with generalized gradient approximation (GGA) functional and semiempirical correction for dispersion energies; band profiles and bandgaps are computed including both spin orbit coupling (SOC) and correlation (GW) effects through an additive scheme. The theoretical procedures are validated by reproducing the experimental data of a well known 3D tin iodide perovskite. The results, combined with the calculations previously reported on PbI4 analogues, allow us to discuss the effect of cation, metal, and halide substitution in these systems and in particular to explore the possibility of changing the electronic bandgap as required by different applications. The balance of SOC and GW effects depends on the chemical nature of the studied perovskites and strongly influences the value of the simulated bandgap.

11.
J Chem Phys ; 144(16): 164701, 2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-27131557

RESUMEN

A number of 2D layered perovskites A2PbI4 and BPbI4, with A and B mono- and divalent ammonium and imidazolium cations, have been modeled with different theoretical methods. The periodic structures have been optimized (both in monoclinic and in triclinic systems, corresponding to eclipsed and staggered arrangements of the inorganic layers) at the DFT level, with hybrid functionals, Gaussian-type orbitals and dispersion energy corrections. With the same methods, the various contributions to the solid stabilization energy have been discussed, separating electrostatic and dispersion energies, organic-organic intralayer interactions and H-bonding effects, when applicable. Then the electronic band gaps have been computed with plane waves, at the DFT level with scalar and full relativistic potentials, and including the correlation energy through the GW approximation. Spin orbit coupling and GW effects have been combined in an additive scheme, validated by comparing the computed gap with well known experimental and theoretical results for a model system. Finally, various contributions to the computed band gaps have been discussed on some of the studied systems, by varying some geometrical parameters and by substituting one cation in another's place.

12.
Langmuir ; 30(14): 4147-56, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24646367

RESUMEN

The adsorption isotherms of CO2 in several porous aromatic frameworks (PAFs) have been simulated with Grand Canonical Monte Carlo technique, to support the synthesis of new materials for efficient carbon dioxide capture and storage. The simulations covered the 0-60 bar pressure range and were repeated at 273, 298, and 323 K. The force field employed in the simulations was optimized to fit the correct behavior of the free gas and to reproduce the CO2-phenyl interactions computed at high quantum mechanical level. PAFs are based on the diamond structure, with polyaromatic chains inserted in C-C bonds. We examined four PAF-30n (n being the number of phenyl rings in the aromatic linkers), finding that PAF-302 is overall the best performing, although PAF-301 provides higher adsorbed densities at very low pressure. The CO2 adsorption then was simulated in a number of modified PAF-302, with different functional groups (aminomethane, toluene, pyridine, and imidazole) attached to the phenyl chains; different degrees of substitution (25%, 50%, and 100% derivatized rings) were considered. The effects of functionalization and the dependence on the substitution degree are carefully discussed, to determine the most promising materials at low, intermediate, and high pressures.

13.
Langmuir ; 28(40): 14405-14, 2012 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-22935012

RESUMEN

The adsorption isotherms of methane in four micro- and mesoporous materials, based on the diamond structure with (poly)phenyl chains inserted in all the C-C bonds, have been simulated with Grand Canonical Monte Carlo technique. The pressure range was extended above 250 bar and the isotherms were computed at 298, 313, and 353 K, to explore the potentiality of these materials for automotive applications, increasing the capacity of high-pressure tanks or storing a comparable amount of gas at much lower pressure. The force field employed in the simulations was optimized to fit the correct behavior of the free gas in all the pressure range and to reproduce the methane-phenyl interactions computed at high quantum mechanical level (post Hartree-Fock). All the examined materials showed a high affinity for methane, ensuring a larger storage of gas than simple compression in all the conditions: two samples exceeded the target proposed by U.S. Department of Energy for methane storage in low-pressure fuel tanks (180 cm(3) (STP)/cm(3) at 35 bar and room temperature).

14.
J Phys Chem A ; 116(31): 8148-58, 2012 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-22708964

RESUMEN

The spirooxazine/merocyanine couple constitutes a photochromic system that can change from the colorless spirooxazine to the intensely colored merocyanine by thermal or photochemical activation by a reaction that opens the spiro ring of the oxazine. The mechanisms of the ring-opening/closure reactions that interconnect these two isomers have been elucidated by means of a computational study. First, we have used the CASSCF/CASPT2 method to determine in detail these mechanisms in the gas phase for a small model that contains the photoactive part of the whole system. We have found that the state of spirooxazine excited by the initial absorption changes gradually to a lower excited state that is involved in a conical intersection that connects it with the ground state of merocyanine. The same conical intersection is involved in the backward photochemical reaction. Second, using a larger model that includes all the heteroatoms of the system and using the DFT (B3LYP) method, we have studied the influence of a solvent environment on the thermal equilibrium between the open and the closed species. It has been observed experimentally that the thermal equilibrium between these forms is practically unaltered by polar aprotic solvents, but it can be displaced toward the colored form in mixtures of polar protic and aprotic solvents, even if the first one is found in a very small proportion. To reproduce the experimental environments, we have taken into account the long-range effect of the polar aprotic solvent considering it a polarizable continuum, as done in the PCM method, and the short-range effect of the protic solvent including some explicit water molecules in the cluster studied at the atomic level. The results obtained are in good agreement with the experimental observations and explain the reason for this peculiar behavior.


Asunto(s)
Oxazinas/química , Teoría Cuántica , Compuestos de Espiro/química , Temperatura , Benzopiranos/química , Indoles/química , Estructura Molecular , Procesos Fotoquímicos , Solventes/química
15.
J Phys Chem C Nanomater Interfaces ; 125(38): 21199-21210, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34621460

RESUMEN

Hybrid catalysts are attracting much attention, since they combine the versatility and efficiency of homogeneous organic catalysis with the robustness and thermal stability of solid materials, for example, mesoporous silica; in addition, they can be used in cascade reactions, for exploring both organic and inorganic catalysis at the same time. Despite the importance of the organic/inorganic interface in these materials, the effect of the grafting architecture on the final conformation of the organic layer (and hence its reactivity) is still largely unexplored. Here, we investigate a series of organosiloxanes comprising a pyridine ring (the catalyst model) and different numbers of alkylsiloxane chains used to anchor it to the MCM-41 surface. The hybrid interfaces are characterized with X-ray powder diffraction, thermogravimetric analyses, Fourier-transform infrared spectroscopy, nuclear magnetic resonance techniques and are modeled theoretically through molecular dynamics (MD) simulations, to determine the relationship between the number of chains and the average position of the pyridine group; MD simulations also provide some insights about temperature and solvent effects.

16.
Chemistry ; 16(35): 10727-34, 2010 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-20669190

RESUMEN

Functionalised MCM-41 mesoporous silica nanoparticles were used as carriers of Gd(III) complexes for the development of nanosized magnetic resonance imaging contrast agents. Three Gd(III) complexes based on the 1,4,7,10-tetraazacyclododecane scaffold (DOTA; monoamide-, DOTA- and DO3A-like complexes) with distinct structural and magnetic properties were anchored on the silica nanoparticles functionalised with NH(2) groups. The interaction between Gd(III) chelates and surface functional groups markedly influenced the relaxometric properties of the hybrid materials, and were deeply modified passing from ionic -NH(3)(+) to neutral amides. A complete study of the structural, textural and surface properties together with a full (1)H relaxometric characterisation of these hybrid materials before and after surface modification was carried out. Particularly for the anionic complex 2 attached to MCM-41, an impressive increase in relaxivity (r(1p)) was observed (from 20.3 to 37.8 mM(-1) s(-1), 86.2% enhancement at 20 MHz and 310 K), mainly due to a threefold faster water exchange rate after acetylation of the surface -NH(3)(+) ions. This high r(1p) value, coupled with the large molar amount of grafted 2 onto the silica nanoparticles gives rise to a value of relaxivity per particle of 29,500 mM(-1) s(-1), which possibly allows it to be used in molecular imaging procedures. Smaller changes were observed for the hybrid materials based on neutral 1 and 3 complexes. In fact, whereas 1 shows a weak interaction with the surface and acetylation induced only some decrease of the local rotation, complex 3 appears to be involved in a strong interaction with surface silanols. This results in the displacement of a coordinated water molecule and in a decrease of the accessibility of the solvent to the metal centre, which is unaffected by the modification of ammonium ions to neutral amides.


Asunto(s)
Quelantes/química , Medios de Contraste/química , Gadolinio/química , Nanopartículas/química , Dióxido de Silicio/química , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Modelos Moleculares
17.
Langmuir ; 26(12): 9524-32, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20184353

RESUMEN

A combined experimental and computational study of the interactions of three sulfonamides--sulfadiazine, sulfamethazine, and sulfachloropyridazine--embedded into the cages of high silica zeolite Y is here proposed. For all host-guest systems, the close vicinity of aromatic rings with zeolite framework was evidenced by multidimensional and multinuclear ((1)H, (13)C, (29)Si) SS-NMR measurements. Host-guest and guest-guest interactions were also elucidated by in situ FTIR spectroscopy and confirmed by ab initio computational modeling. Single molecules of sulfamethazine and sulfachloropyridazine were stabilized inside the zeolite cage by the vicinity of methyl and amino groups, respectively. Sulfadiazine is present in both monomeric and dimeric forms. Multiple weak H-bonds and van der Waals type interactions between organic molecules and zeolite are responsible for the irreversible extraction from water of all the examined sulfa drugs.


Asunto(s)
Antibacterianos/aislamiento & purificación , Sulfonamidas/aislamiento & purificación , Zeolitas/química , Antibacterianos/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Dióxido de Silicio , Sulfonamidas/química
18.
Polymers (Basel) ; 11(4)2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30960572

RESUMEN

The preparation of porous carbons by post-synthesis treatment of hypercrosslinked polymers is described, with a careful physico-chemical characterization, to obtain new materials for gas storage and separation. Different procedures, based on chemical and thermal activations, are considered; they include thermal treatment at 380 °C, and chemical activation with KOH followed by thermal treatment at 750 or 800 °C; the resulting materials are carefully characterized in their structural and textural properties. The thermal treatment at temperature below decomposition (380 °C) maintains the polymer structure, removing the side-products of the polymerization entrapped in the pores and improving the textural properties. On the other hand, the carbonization leads to a different material, enhancing both surface area and total pore volume-the textural properties of the final porous carbons are affected by the activation procedure and by the starting polymer. Different chemical activation methods and temperatures lead to different carbons with BET surface area ranging between 2318 and 2975 m²/g and pore volume up to 1.30 cc/g. The wise choice of the carbonization treatment allows the final textural properties to be finely tuned by increasing either the narrow pore fraction or the micro- and mesoporous volume. High pressure gas adsorption measurements of methane, hydrogen, and carbon dioxide of the most promising material are investigated, and the storage capacity for methane is measured and discussed.

19.
Nanomaterials (Basel) ; 9(5)2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-31083428

RESUMEN

In this paper, we describe the synthesis and gas adsorption properties of a porous carbonaceous material, obtained from commercial expanded polystyrene. The first step consists of the Friedel-Craft reaction of the dissolved polystyrene chains with a bridging agent to form a highly-crosslinked polymer, with permanent porosity of 0.7 cm 3 /g; then, this polymer is treated with potassium hydroxide at a high temperature to produce a carbon material with a porous volume larger than 1.4 cm 3 / g and a distribution of ultramicro-, micro-, and mesopores. After characterization of the porous carbon and determination of the bulk density, the methane uptake was measured using a volumetric apparatus to pressures up to 30 bar. The equilibrium adsorption isotherm obtained is among the highest ever reported for this kind of material. The interest of this product lies both in its excellent performance and in the virtually costless starting material.

20.
Front Chem ; 6: 158, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29868561

RESUMEN

The key criteria to optimize the relaxivity of a Gd(III) contrast agent at high fields (defined as the region ≥ 1.5 T) can be summarized as follows: (i) the occurrence of a rotational correlation time τR in the range of ca. 0.2-0.5 ns; (ii) the rate of water exchange is not critical, but a τM < 100 ns is preferred; (iii) a relevant contribution from water molecules in the second sphere of hydration. In addition, the use of macrocycle-based systems ensures the formation of thermodynamically and kinetically stable Gd(III) complexes. Binuclear Gd(III) complexes could potentially meet these requirements. Their efficiency depends primarily on the degree of flexibility of the linker connecting the two monomeric units, the absence of local motions and the presence of contribution from the second sphere water molecules. With the aim to maximize relaxivity (per Gd) over a wide range of magnetic field strengths, two binuclear Gd(III) chelates derived from the well-known macrocyclic systems DOTA-monopropionamide and HPDO3A (Gd2L1 and Gd2L2, respectively) were synthesized through a multistep synthesis. Chemical Exchange Saturation Transfer (CEST) experiments carried out on Eu2L2 at different pH showed the occurrence of a CEST effect at acidic pH that disappears at neutral pH, associated with the deprotonation of the hydroxyl groups. Then, a complete 1H and 17O NMR relaxometric study was carried out in order to evaluate the parameters that govern the relaxivity associated with these complexes. The relaxivities of Gd2L1 and Gd2L2 (20 MHz, 298 K) are 8.7 and 9.5 mM-1 s-1, respectively, +77% and +106% higher than the relaxivity values of the corresponding mononuclear GdDOTAMAP-En and GdHPDO3A complexes. A significant contribution of second sphere water molecules was accounted for the strong relaxivity enhancement of Gd2L2. MR phantom images of the dinuclear complexes compared to GdHPDO3A, recorded at 7 T, confirmed the superiority of Gd2L2. Finally, ab initio (DFT) calculations were performed to obtain information about the solution structure of the dinuclear complexes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA