Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(9): 2269-2287.e16, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38608703

RESUMEN

Knudson's "two-hit" paradigm posits that carcinogenesis requires inactivation of both copies of an autosomal tumor suppressor gene. Here, we report that the glycolytic metabolite methylglyoxal (MGO) transiently bypasses Knudson's paradigm by inactivating the breast cancer suppressor protein BRCA2 to elicit a cancer-associated, mutational single-base substitution (SBS) signature in nonmalignant mammary cells or patient-derived organoids. Germline monoallelic BRCA2 mutations predispose to these changes. An analogous SBS signature, again without biallelic BRCA2 inactivation, accompanies MGO accumulation and DNA damage in Kras-driven, Brca2-mutant murine pancreatic cancers and human breast cancers. MGO triggers BRCA2 proteolysis, temporarily disabling BRCA2's tumor suppressive functions in DNA repair and replication, causing functional haploinsufficiency. Intermittent MGO exposure incites episodic SBS mutations without permanent BRCA2 inactivation. Thus, a metabolic mechanism wherein MGO-induced BRCA2 haploinsufficiency transiently bypasses Knudson's two-hit requirement could link glycolysis activation by oncogenes, metabolic disorders, or dietary challenges to mutational signatures implicated in cancer evolution.


Asunto(s)
Proteína BRCA2 , Neoplasias de la Mama , Glucólisis , Piruvaldehído , Animales , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Ratones , Humanos , Femenino , Piruvaldehído/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Haploinsuficiencia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Mutación , Daño del ADN , Reparación del ADN , Línea Celular Tumoral
2.
Cell ; 167(2): 457-470.e13, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27667687

RESUMEN

Activated macrophages undergo metabolic reprogramming, which drives their pro-inflammatory phenotype, but the mechanistic basis for this remains obscure. Here, we demonstrate that upon lipopolysaccharide (LPS) stimulation, macrophages shift from producing ATP by oxidative phosphorylation to glycolysis while also increasing succinate levels. We show that increased mitochondrial oxidation of succinate via succinate dehydrogenase (SDH) and an elevation of mitochondrial membrane potential combine to drive mitochondrial reactive oxygen species (ROS) production. RNA sequencing reveals that this combination induces a pro-inflammatory gene expression profile, while an inhibitor of succinate oxidation, dimethyl malonate (DMM), promotes an anti-inflammatory outcome. Blocking ROS production with rotenone by uncoupling mitochondria or by expressing the alternative oxidase (AOX) inhibits this inflammatory phenotype, with AOX protecting mice from LPS lethality. The metabolic alterations that occur upon activation of macrophages therefore repurpose mitochondria from ATP synthesis to ROS production in order to promote a pro-inflammatory state.


Asunto(s)
Inflamación/inmunología , Activación de Macrófagos , Macrófagos/inmunología , Mitocondrias/enzimología , Succinato Deshidrogenasa/metabolismo , Ácido Succínico/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Ciclo del Ácido Cítrico , Glucólisis , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inflamación/genética , Interleucina-10/metabolismo , Lipopolisacáridos/inmunología , Macrófagos/metabolismo , Malonatos/farmacología , Potencial de la Membrana Mitocondrial , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Oxidación-Reducción/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Análisis de Secuencia de ARN , Succinato Deshidrogenasa/genética , Transcriptoma
3.
Nature ; 615(7952): 499-506, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36890229

RESUMEN

Mutations in fumarate hydratase (FH) cause hereditary leiomyomatosis and renal cell carcinoma1. Loss of FH in the kidney elicits several oncogenic signalling cascades through the accumulation of the oncometabolite fumarate2. However, although the long-term consequences of FH loss have been described, the acute response has not so far been investigated. Here we generated an inducible mouse model to study the chronology of FH loss in the kidney. We show that loss of FH leads to early alterations of mitochondrial morphology and the release of mitochondrial DNA (mtDNA) into the cytosol, where it triggers the activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-TANK-binding kinase 1 (TBK1) pathway and stimulates an inflammatory response that is also partially dependent on retinoic-acid-inducible gene I (RIG-I). Mechanistically, we show that this phenotype is mediated by fumarate and occurs selectively through mitochondrial-derived vesicles in a manner that depends on sorting nexin 9 (SNX9). These results reveal that increased levels of intracellular fumarate induce a remodelling of the mitochondrial network and the generation of mitochondrial-derived vesicles, which allows the release of mtDNAin the cytosol and subsequent activation of the innate immune response.


Asunto(s)
ADN Mitocondrial , Fumaratos , Inmunidad Innata , Mitocondrias , Animales , Ratones , ADN Mitocondrial/metabolismo , Fumarato Hidratasa/genética , Fumarato Hidratasa/metabolismo , Fumaratos/metabolismo , Mitocondrias/enzimología , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Riñón/enzimología , Riñón/metabolismo , Riñón/patología , Citosol/metabolismo
4.
Nature ; 615(7952): 490-498, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36890227

RESUMEN

Metabolic rewiring underlies the effector functions of macrophages1-3, but the mechanisms involved remain incompletely defined. Here, using unbiased metabolomics and stable isotope-assisted tracing, we show that an inflammatory aspartate-argininosuccinate shunt is induced following lipopolysaccharide stimulation. The shunt, supported by increased argininosuccinate synthase (ASS1) expression, also leads to increased cytosolic fumarate levels and fumarate-mediated protein succination. Pharmacological inhibition and genetic ablation of the tricarboxylic acid cycle enzyme fumarate hydratase (FH) further increases intracellular fumarate levels. Mitochondrial respiration is also suppressed and mitochondrial membrane potential increased. RNA sequencing and proteomics analyses demonstrate that there are strong inflammatory effects resulting from FH inhibition. Notably, acute FH inhibition suppresses interleukin-10 expression, which leads to increased tumour necrosis factor secretion, an effect recapitulated by fumarate esters. Moreover, FH inhibition, but not fumarate esters, increases interferon-ß production through mechanisms that are driven by mitochondrial RNA (mtRNA) release and activation of the RNA sensors TLR7, RIG-I and MDA5. This effect is recapitulated endogenously when FH is suppressed following prolonged lipopolysaccharide stimulation. Furthermore, cells from patients with systemic lupus erythematosus also exhibit FH suppression, which indicates a potential pathogenic role for this process in human disease. We therefore identify a protective role for FH in maintaining appropriate macrophage cytokine and interferon responses.


Asunto(s)
Fumarato Hidratasa , Interferón beta , Macrófagos , Mitocondrias , ARN Mitocondrial , Humanos , Argininosuccinato Sintasa/metabolismo , Ácido Argininosuccínico/metabolismo , Ácido Aspártico/metabolismo , Respiración de la Célula , Citosol/metabolismo , Fumarato Hidratasa/antagonistas & inhibidores , Fumarato Hidratasa/genética , Fumarato Hidratasa/metabolismo , Fumaratos/metabolismo , Interferón beta/biosíntesis , Interferón beta/inmunología , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Lupus Eritematoso Sistémico/enzimología , Macrófagos/enzimología , Macrófagos/inmunología , Macrófagos/metabolismo , Potencial de la Membrana Mitocondrial , Metabolómica , Mitocondrias/genética , Mitocondrias/metabolismo , ARN Mitocondrial/metabolismo
5.
Immunity ; 48(3): 542-555.e6, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29523440

RESUMEN

Glycolysis is linked to the rapid response of memory CD8+ T cells, but the molecular and subcellular structural elements enabling enhanced glucose metabolism in nascent activated memory CD8+ T cells are unknown. We found that rapid activation of protein kinase B (PKB or AKT) by mammalian target of rapamycin complex 2 (mTORC2) led to inhibition of glycogen synthase kinase 3ß (GSK3ß) at mitochondria-endoplasmic reticulum (ER) junctions. This enabled recruitment of hexokinase I (HK-I) to the voltage-dependent anion channel (VDAC) on mitochondria. Binding of HK-I to VDAC promoted respiration by facilitating metabolite flux into mitochondria. Glucose tracing pinpointed pyruvate oxidation in mitochondria, which was the metabolic requirement for rapid generation of interferon-γ (IFN-γ) in memory T cells. Subcellular organization of mTORC2-AKT-GSK3ß at mitochondria-ER contact sites, promoting HK-I recruitment to VDAC, thus underpins the metabolic reprogramming needed for memory CD8+ T cells to rapidly acquire effector function.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Retículo Endoplásmico/metabolismo , Metabolismo Energético , Memoria Inmunológica , Mitocondrias/metabolismo , Transducción de Señal , Respiración de la Célula , Retículo Endoplásmico/ultraestructura , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucólisis , Membranas Intracelulares/metabolismo , Activación de Linfocitos , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Mitocondrias/ultraestructura , Modelos Biológicos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/deficiencia
6.
Nature ; 556(7699): 113-117, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29590092

RESUMEN

The endogenous metabolite itaconate has recently emerged as a regulator of macrophage function, but its precise mechanism of action remains poorly understood. Here we show that itaconate is required for the activation of the anti-inflammatory transcription factor Nrf2 (also known as NFE2L2) by lipopolysaccharide in mouse and human macrophages. We find that itaconate directly modifies proteins via alkylation of cysteine residues. Itaconate alkylates cysteine residues 151, 257, 288, 273 and 297 on the protein KEAP1, enabling Nrf2 to increase the expression of downstream genes with anti-oxidant and anti-inflammatory capacities. The activation of Nrf2 is required for the anti-inflammatory action of itaconate. We describe the use of a new cell-permeable itaconate derivative, 4-octyl itaconate, which is protective against lipopolysaccharide-induced lethality in vivo and decreases cytokine production. We show that type I interferons boost the expression of Irg1 (also known as Acod1) and itaconate production. Furthermore, we find that itaconate production limits the type I interferon response, indicating a negative feedback loop that involves interferons and itaconate. Our findings demonstrate that itaconate is a crucial anti-inflammatory metabolite that acts via Nrf2 to limit inflammation and modulate type I interferons.


Asunto(s)
Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/química , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/agonistas , Factor 2 Relacionado con NF-E2/metabolismo , Succinatos/metabolismo , Alquilación , Animales , Carboxiliasas , Bovinos , Cisteína/química , Cisteína/metabolismo , Citocinas/biosíntesis , Citocinas/inmunología , Retroalimentación Fisiológica , Femenino , Células HEK293 , Humanos , Hidroliasas/biosíntesis , Interferón beta/inmunología , Interferón beta/farmacología , Lipopolisacáridos/inmunología , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Proteínas/metabolismo , Ratas , Ratas Wistar , Succinatos/química
7.
J Biol Chem ; 298(2): 101501, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34929172

RESUMEN

Activated macrophages undergo metabolic reprogramming, which not only supports their energetic demands but also allows for the production of specific metabolites that function as signaling molecules. Several Krebs cycles, or Krebs-cycle-derived metabolites, including succinate, α-ketoglutarate, and itaconate, have recently been shown to modulate macrophage function. The accumulation of 2-hydroxyglutarate (2HG) has also been well documented in transformed cells and more recently shown to play a role in T cell and dendritic cell function. Here we have found that the abundance of both enantiomers of 2HG is increased in LPS-activated macrophages. We show that L-2HG, but not D-2HG, can promote the expression of the proinflammatory cytokine IL-1ß and the adoption of an inflammatory, highly glycolytic metabolic state. These changes are likely mediated through activation of the transcription factor hypoxia-inducible factor-1α (HIF-1α) by L-2HG, a known inhibitor of the HIF prolyl hydroxylases. Expression of the enzyme responsible for L-2HG degradation, L-2HG dehydrogenase (L-2HGDH), was also found to be decreased in LPS-stimulated macrophages and may therefore also contribute to L-2HG accumulation. Finally, overexpression of L-2HGDH in HEK293 TLR4/MD2/CD14 cells inhibited HIF-1α activation by LPS, while knockdown of L-2HGDH in macrophages boosted the induction of HIF-1α-dependent genes, as well as increasing LPS-induced HIF-1α activity. Taken together, this study therefore identifies L-2HG as a metabolite that can regulate HIF-1α in macrophages.


Asunto(s)
Glutaratos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Lipopolisacáridos , Macrófagos , Glutaratos/metabolismo , Células HEK293 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lipopolisacáridos/farmacología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/enzimología , Macrófagos/metabolismo
8.
Gut ; 71(5): 879-888, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35144974

RESUMEN

OBJECTIVE: We assessed whether famotidine improved inflammation and symptomatic recovery in outpatients with mild to moderate COVID-19. DESIGN: Randomised, double-blind, placebo-controlled, fully remote, phase 2 clinical trial (NCT04724720) enrolling symptomatic unvaccinated adult outpatients with confirmed COVID-19 between January 2021 and April 2021 from two US centres. Patients self-administered 80 mg famotidine (n=28) or placebo (n=27) orally three times a day for 14 consecutive days. Endpoints were time to (primary) or rate of (secondary) symptom resolution, and resolution of inflammation (exploratory). RESULTS: Of 55 patients in the intention-to-treat group (median age 35 years (IQR: 20); 35 women (64%); 18 African American (33%); 14 Hispanic (26%)), 52 (95%) completed the trial, submitting 1358 electronic symptom surveys. Time to symptom resolution was not statistically improved (p=0.4). Rate of symptom resolution was improved for patients taking famotidine (p<0.0001). Estimated 50% reduction of overall baseline symptom scores were achieved at 8.2 days (95% CI: 7 to 9.8 days) for famotidine and 11.4 days (95% CI: 10.3 to 12.6 days) for placebo treated patients. Differences were independent of patient sex, race or ethnicity. Five self-limiting adverse events occurred (famotidine, n=2 (40%); placebo, n=3 (60%)). On day 7, fewer patients on famotidine had detectable interferon alpha plasma levels (p=0.04). Plasma immunoglobulin type G levels to SARS-CoV-2 nucleocapsid core protein were similar between both arms. CONCLUSIONS: Famotidine was safe and well tolerated in outpatients with mild to moderate COVID-19. Famotidine led to earlier resolution of symptoms and inflammation without reducing anti-SARS-CoV-2 immunity. Additional randomised trials are required.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Famotidina , Adulto , Método Doble Ciego , Famotidina/uso terapéutico , Femenino , Humanos , Inflamación , SARS-CoV-2 , Resultado del Tratamiento
9.
J Cell Sci ; 133(22)2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33148611

RESUMEN

In response to environmental stimuli, macrophages change their nutrient consumption and undergo an early metabolic adaptation that progressively shapes their polarization state. During the transient, early phase of pro-inflammatory macrophage activation, an increase in tricarboxylic acid (TCA) cycle activity has been reported, but the relative contribution of branched-chain amino acid (BCAA) leucine remains to be determined. Here, we show that glucose but not glutamine is a major contributor of the increase in TCA cycle metabolites during early macrophage activation in humans. We then show that, although uptake of BCAAs is not altered, their transamination by BCAT1 is increased following 8 h lipopolysaccharide (LPS) stimulation. Of note, leucine is not metabolized to integrate into the TCA cycle in basal or stimulated human macrophages. Surprisingly, the pharmacological inhibition of BCAT1 reduced glucose-derived itaconate, α-ketoglutarate and 2-hydroxyglutarate levels without affecting succinate and citrate levels, indicating a partial inhibition of the TCA cycle. This indirect effect is associated with NRF2 (also known as NFE2L2) activation and anti-oxidant responses. These results suggest a moonlighting role of BCAT1 through redox-mediated control of mitochondrial function during early macrophage activation.


Asunto(s)
Activación de Macrófagos , Macrófagos , Mitocondrias , Transaminasas , Ciclo del Ácido Cítrico , Humanos , Leucina/metabolismo , Macrófagos/metabolismo , Mitocondrias/metabolismo , Transaminasas/metabolismo
10.
Mol Syst Biol ; 17(1): e9730, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33502086

RESUMEN

Multi-omics datasets can provide molecular insights beyond the sum of individual omics. Various tools have been recently developed to integrate such datasets, but there are limited strategies to systematically extract mechanistic hypotheses from them. Here, we present COSMOS (Causal Oriented Search of Multi-Omics Space), a method that integrates phosphoproteomics, transcriptomics, and metabolomics datasets. COSMOS combines extensive prior knowledge of signaling, metabolic, and gene regulatory networks with computational methods to estimate activities of transcription factors and kinases as well as network-level causal reasoning. COSMOS provides mechanistic hypotheses for experimental observations across multi-omics datasets. We applied COSMOS to a dataset comprising transcriptomics, phosphoproteomics, and metabolomics data from healthy and cancerous tissue from eleven clear cell renal cell carcinoma (ccRCC) patients. COSMOS was able to capture relevant crosstalks within and between multiple omics layers, such as known ccRCC drug targets. We expect that our freely available method will be broadly useful to extract mechanistic insights from multi-omics studies.


Asunto(s)
Carcinoma de Células Renales/genética , Biología Computacional/métodos , Redes Reguladoras de Genes , Neoplasias Renales/genética , Carcinoma de Células Renales/metabolismo , Estudios de Casos y Controles , Perfilación de la Expresión Génica , Humanos , Neoplasias Renales/metabolismo , Metabolómica , Fosfoproteínas
11.
Blood ; 131(15): 1639-1653, 2018 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-29463564

RESUMEN

FLT3 internal tandem duplication (FLT3ITD) mutations are common in acute myeloid leukemia (AML) associated with poor patient prognosis. Although new-generation FLT3 tyrosine kinase inhibitors (TKI) have shown promising results, the outcome of FLT3ITD AML patients remains poor and demands the identification of novel, specific, and validated therapeutic targets for this highly aggressive AML subtype. Utilizing an unbiased genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 screen, we identify GLS, the first enzyme in glutamine metabolism, as synthetically lethal with FLT3-TKI treatment. Using complementary metabolomic and gene-expression analysis, we demonstrate that glutamine metabolism, through its ability to support both mitochondrial function and cellular redox metabolism, becomes a metabolic dependency of FLT3ITD AML, specifically unmasked by FLT3-TKI treatment. We extend these findings to AML subtypes driven by other tyrosine kinase (TK) activating mutations and validate the role of GLS as a clinically actionable therapeutic target in both primary AML and in vivo models. Our work highlights the role of metabolic adaptations as a resistance mechanism to several TKI and suggests glutaminolysis as a therapeutically targetable vulnerability when combined with specific TKI in FLT3ITD and other TK activating mutation-driven leukemias.


Asunto(s)
Glutamina/metabolismo , Leucemia Mieloide Aguda , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Tirosina Quinasa 3 Similar a fms , Sistemas CRISPR-Cas , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Estudio de Asociación del Genoma Completo , Glutamina/genética , Humanos , Células K562 , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/enzimología , Leucemia Mieloide Aguda/genética , Células THP-1 , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismo
12.
Nature ; 515(7527): 431-435, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25383517

RESUMEN

Ischaemia-reperfusion injury occurs when the blood supply to an organ is disrupted and then restored, and underlies many disorders, notably heart attack and stroke. While reperfusion of ischaemic tissue is essential for survival, it also initiates oxidative damage, cell death and aberrant immune responses through the generation of mitochondrial reactive oxygen species (ROS). Although mitochondrial ROS production in ischaemia reperfusion is established, it has generally been considered a nonspecific response to reperfusion. Here we develop a comparative in vivo metabolomic analysis, and unexpectedly identify widely conserved metabolic pathways responsible for mitochondrial ROS production during ischaemia reperfusion. We show that selective accumulation of the citric acid cycle intermediate succinate is a universal metabolic signature of ischaemia in a range of tissues and is responsible for mitochondrial ROS production during reperfusion. Ischaemic succinate accumulation arises from reversal of succinate dehydrogenase, which in turn is driven by fumarate overflow from purine nucleotide breakdown and partial reversal of the malate/aspartate shuttle. After reperfusion, the accumulated succinate is rapidly re-oxidized by succinate dehydrogenase, driving extensive ROS generation by reverse electron transport at mitochondrial complex I. Decreasing ischaemic succinate accumulation by pharmacological inhibition is sufficient to ameliorate in vivo ischaemia-reperfusion injury in murine models of heart attack and stroke. Thus, we have identified a conserved metabolic response of tissues to ischaemia and reperfusion that unifies many hitherto unconnected aspects of ischaemia-reperfusion injury. Furthermore, these findings reveal a new pathway for metabolic control of ROS production in vivo, while demonstrating that inhibition of ischaemic succinate accumulation and its oxidation after subsequent reperfusion is a potential therapeutic target to decrease ischaemia-reperfusion injury in a range of pathologies.


Asunto(s)
Isquemia/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/metabolismo , Ácido Succínico/metabolismo , Adenosina Monofosfato/metabolismo , Animales , Ácido Aspártico/metabolismo , Ciclo del Ácido Cítrico , Modelos Animales de Enfermedad , Transporte de Electrón , Complejo I de Transporte de Electrón/metabolismo , Fumaratos/metabolismo , Isquemia/enzimología , Malatos/metabolismo , Masculino , Metabolómica , Ratones , Mitocondrias/enzimología , Infarto del Miocardio/enzimología , Infarto del Miocardio/metabolismo , Miocardio/citología , Miocardio/enzimología , Miocardio/metabolismo , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/metabolismo , NAD/metabolismo , Daño por Reperfusión/enzimología , Accidente Cerebrovascular/enzimología , Accidente Cerebrovascular/metabolismo , Succinato Deshidrogenasa/metabolismo
14.
Nat Chem Biol ; 13(9): 951-955, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28671681

RESUMEN

Extracellular vesicles (EVs) are membrane particles involved in the exchange of a broad range of bioactive molecules between cells and the microenvironment. Although it has been shown that cells can traffic metabolic enzymes via EVs, much remains to be elucidated with regard to their intrinsic metabolic activity. Accordingly, herein we assessed the ability of neural stem/progenitor cell (NSC)-derived EVs to consume and produce metabolites. Our metabolomics and functional analyses both revealed that EVs harbor L-asparaginase activity, catalyzed by the enzyme asparaginase-like protein 1 (Asrgl1). Critically, we show that Asrgl1 activity is selective for asparagine and is devoid of glutaminase activity. We found that mouse and human NSC EVs traffic Asrgl1. Our results demonstrate, for the first time, that NSC EVs function as independent metabolic units that are able to modify the concentrations of critical nutrients, with the potential to affect the physiology of their microenvironment.


Asunto(s)
Asparaginasa/metabolismo , Vesículas Extracelulares/metabolismo , Modelos Biológicos
15.
J Mol Cell Cardiol ; 123: 88-91, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30118790

RESUMEN

Ischemia-reperfusion (IR) injury occurs when blood supply to an organ is disrupted and then restored, and underlies many disorders, notably myocardial infarction and stroke. While reperfusion of ischemic tissue is essential for survival, it also initiates cell death through generation of mitochondrial reactive oxygen species (ROS). Recent work has revealed a novel pathway underlying ROS production at reperfusion in vivo in which the accumulation of succinate during ischemia and its subsequent rapid oxidation at reperfusion drives ROS production at complex I by reverse electron transport (RET). Pharmacologically inhibiting ischemic succinate accumulation, or slowing succinate metabolism at reperfusion, have been shown to be cardioprotective against IR injury. Here, we determined whether ischemic preconditioning (IPC) contributes to cardioprotection by altering kinetics of succinate accumulation and oxidation during IR. Mice were subjected to a 30-minute occlusion of the left anterior descending coronary artery followed by reperfusion, with or without a protective IPC protocol prior to sustained ischemia. We found that IPC had no effect on ischemic succinate accumulation with both control and IPC mice having profound increases in succinate compared to normoxia. Furthermore, after only 1-minute reperfusion succinate was rapidly metabolised returning to near pre-ischemic levels in both groups. We conclude that IPC does not affect ischemic succinate accumulation, or its oxidation at reperfusion.


Asunto(s)
Precondicionamiento Isquémico Miocárdico , Daño por Reperfusión Miocárdica/metabolismo , Oxidación-Reducción , Ácido Succínico/metabolismo , Análisis de Varianza , Animales , Modelos Animales de Enfermedad , Metabolismo Energético , Masculino , Metaboloma , Metabolómica/métodos , Ratones , Mitocondrias/metabolismo , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/metabolismo , Miocardio/patología , Especies Reactivas de Oxígeno/metabolismo
16.
Metab Eng ; 45: 149-157, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29191787

RESUMEN

Deregulated signal transduction and energy metabolism are hallmarks of cancer and both play a fundamental role in tumorigenesis. While it is increasingly recognised that signalling and metabolism are highly interconnected, the underpinning mechanisms of their co-regulation are still largely unknown. Here we designed and acquired proteomics, phosphoproteomics, and metabolomics experiments in fumarate hydratase (FH) deficient cells and developed a computational modelling approach to identify putative regulatory phosphorylation-sites of metabolic enzymes. We identified previously reported functionally relevant phosphosites and potentially novel regulatory residues in enzymes of the central carbon metabolism. In particular, we showed that pyruvate dehydrogenase (PDHA1) enzymatic activity is inhibited by increased phosphorylation in FH-deficient cells, restricting carbon entry from glucose to the tricarboxylic acid cycle. Moreover, we confirmed PDHA1 phosphorylation in human FH-deficient tumours. Our work provides a novel approach to investigate how post-translational modifications of enzymes regulate metabolism and could have important implications for understanding the metabolic transformation of FH-deficient cancers with potential clinical applications.


Asunto(s)
Fumarato Hidratasa/deficiencia , Proteínas de Neoplasias , Neoplasias , Procesamiento Proteico-Postraduccional , Piruvato Deshidrogenasa (Lipoamida) , Línea Celular Tumoral , Fumarato Hidratasa/metabolismo , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Piruvato Deshidrogenasa (Lipoamida)/genética , Piruvato Deshidrogenasa (Lipoamida)/metabolismo
17.
Br J Nutr ; 110(2): 216-29, 2013 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-23286604

RESUMEN

The present study assessed the effect of pig genotype (fatty v. lean) and dietary protein and lysine (Lys) levels (normal v. reduced) on intramuscular fat (IMF) content, subcutaneous adipose tissue (SAT) deposition, fatty acid composition and mRNA levels of genes controlling lipid metabolism. The experiment was conducted on sixty intact male pigs (thirty Alentejana purebred and thirty Large White × Landrace × Pietrain crossbred), from 60 to 93 kg of live weight. Animals were divided into three groups fed with the following diets: control diet equilibrated for Lys (17·5 % crude protein (CP) and 0·7 % Lys), reduced protein diet (RPD) equilibrated for Lys (13·2 % CP and 0·6 % Lys) and RPD not equilibrated for Lys (13·1 % CP and 0·4 % Lys). It was shown that the RPD increased fat deposition in the longissimus lumborum muscle in the lean but not in the fatty pig genotype. It is strongly suggested that the effect of RPD on the longissimus lumborum muscle of crossbred pigs is mediated via Lys restriction. The increase in IMF content under the RPD was accompanied by increased stearoyl-CoA desaturase (SCD) and PPARG mRNA levels. RPD did not alter backfat thickness, but increased the total fatty acid content in both lean and fatty pig genotype. The higher amount of SAT in fatty pigs, when compared with the lean ones, was associated with the higher expression levels of ACACA, CEBPA, FASN and SCD genes. Taken together, the data indicate that the mechanisms regulating fat deposition in pigs are genotype and tissue specific, and are associated with the expression regulation of the key lipogenic genes.


Asunto(s)
Dieta con Restricción de Proteínas , Proteínas en la Dieta/administración & dosificación , Ácidos Grasos/genética , Genotipo , Lipogénesis/genética , Músculo Esquelético/metabolismo , Grasa Subcutánea/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Cruzamiento , Ácidos Grasos/metabolismo , Expresión Génica , Regulación de la Expresión Génica , Lisina/administración & dosificación , Masculino , PPAR gamma/genética , PPAR gamma/metabolismo , ARN Mensajero/metabolismo , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Sus scrofa
18.
FEBS Lett ; 597(2): 246-261, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36217875

RESUMEN

The compartmentation and distribution of metabolites between mitochondria and the rest of the cell is a key parameter of cell signalling and pathology. Here, we have developed a rapid fractionation procedure that enables us to take mouse heart and liver from in vivo and within ~ 30 s stabilise the distribution of metabolites between mitochondria and the cytosol by rapid cooling, homogenisation and dilution. This is followed by centrifugation of mitochondria through an oil layer to separate mitochondrial and cytosolic fractions for subsequent metabolic analysis. Using this procedure revealed the in vivo compartmentation of mitochondrial metabolites and will enable the assessment of the distribution of metabolites between the cytosol and mitochondria during a range of situations in vivo.


Asunto(s)
Corazón , Mitocondrias , Ratones , Animales , Citosol/metabolismo , Hígado/metabolismo , Mitocondrias Hepáticas/metabolismo , Mitocondrias Cardíacas/metabolismo , Fraccionamiento Celular/métodos
19.
Free Radic Biol Med ; 205: 244-261, 2023 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-37295539

RESUMEN

Myocardial ischemia-reperfusion (IR) injury may result in cardiomyocyte dysfunction. Mitochondria play a critical role in cardiomyocyte recovery after IR injury. The mitochondrial uncoupling protein 3 (UCP3) has been proposed to reduce mitochondrial reactive oxygen species (ROS) production and to facilitate fatty acid oxidation. As both mechanisms might be protective following IR injury, we investigated functional, mitochondrial structural, and metabolic cardiac remodeling in wild-type mice and in mice lacking UCP3 (UCP3-KO) after IR. Results showed that infarct size in isolated perfused hearts subjected to IR ex vivo was larger in adult and old UCP3-KO mice than in equivalent wild-type mice, and was accompanied by higher levels of creatine kinase in the effluent and by more pronounced mitochondrial structural changes. The greater myocardial damage in UCP3-KO hearts was confirmed in vivo after coronary artery occlusion followed by reperfusion. S1QEL, a suppressor of superoxide generation from site IQ in complex I, limited infarct size in UCP3-KO hearts, pointing to exacerbated superoxide production as a possible cause of the damage. Metabolomics analysis of isolated perfused hearts confirmed the reported accumulation of succinate, xanthine and hypoxanthine during ischemia, and a shift to anaerobic glucose utilization, which all recovered upon reoxygenation. The metabolic response to ischemia and IR was similar in UCP3-KO and wild-type hearts, being lipid and energy metabolism the most affected pathways. Fatty acid oxidation and complex I (but not complex II) activity were equally impaired after IR. Overall, our results indicate that UCP3 deficiency promotes enhanced superoxide generation and mitochondrial structural changes that increase the vulnerability of the myocardium to IR injury.


Asunto(s)
Enfermedad de la Arteria Coronaria , Isquemia Miocárdica , Daño por Reperfusión Miocárdica , Ratones , Animales , Superóxidos/metabolismo , Isquemia Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Enfermedad de la Arteria Coronaria/metabolismo , Metabolismo Energético , Isquemia/metabolismo , Reperfusión , Ácidos Grasos/metabolismo , Infarto/complicaciones , Infarto/metabolismo
20.
J Sci Food Agric ; 92(12): 2428-35, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22473659

RESUMEN

BACKGROUND: Consumer awareness regarding the intake of beef of organic origin is strongly associated with the beneficial outcomes to human health, the environment and animal welfare. In this paper the effects of slaughter season and muscle type on the fatty acid composition, conjugated linoleic acid (CLA) isomeric profile, total cholesterol, α-tocopherol and ß-carotene contents and nutritional quality of intramuscular fat in organic beef (n = 30) are reported for the first time. RESULTS: Organic beef showed a very low total lipid content, with seasonal changes in the levels of some fatty acids, CLA isomers, n-6/n-3 polyunsaturated fatty acid (PUFA) ratio, total cholesterol and ß-carotene. In addition, differences between longissimus lumborum (relatively red) and semitendinosus (relatively white) muscles were found for many fatty acids, specific CLA contents, many CLA isomers and both PUFA/saturated fatty acid (SFA) and n-6/n-3 ratios. However, in spite of the seasonal and carcass variations, all organic meats analysed had values of beef similar to pasture-fed cattle. CONCLUSION: From a nutritional perspective, organic meat from both slaughter seasons seems to have high CLA contents, PUFA/SFA and n-6/n-3 indices within the recommended values for the human diet. The data indicate that intramuscular fat in organic meat has a high nutritional value throughout the year.


Asunto(s)
Grasas de la Dieta/metabolismo , Ácidos Grasos Insaturados/metabolismo , Alimentos Orgánicos/análisis , Carne/análisis , Músculo Esquelético/metabolismo , Estaciones del Año , beta Caroteno/metabolismo , Alimentación Animal , Animales , Bovinos , Colesterol/metabolismo , Dieta , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-6/metabolismo , Humanos , Isomerismo , Ácido Linoleico/metabolismo , Ácidos Linoleicos Conjugados/metabolismo , Valor Nutritivo , Poaceae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA