Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 113(4): 851-865, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36597651

RESUMEN

Auxin Response Factor 8 plays a key role in late stamen development: its splice variants ARF8.4 and ARF8.2 control stamen elongation and anther dehiscence. Here, we characterized the role of ARF8 isoforms in pollen fertility. By phenotypic and ultrastructural analysis of arf8-7 mutant stamens, we found defects in pollen germination and viability caused by alterations in exine structure and pollen coat deposition. Furthermore, tapetum degeneration, a prerequisite for proper pollen wall formation, is delayed in arf8-7 anthers. In agreement, the genes encoding the transcription factors TDF1, AMS, MS188 and MS1, required for exine and pollen coat formation, and tapetum development, are downregulated in arf8-7 stamens. Consistently, the sporopollenin content is decreased, and the expression of sporopollenin synthesis/transport and pollen coat protein biosynthetic genes, regulated by AMS and MS188, is reduced. Inducible expression of the full-length isoform ARF8.1 in arf8-7 inflorescences complements the pollen (and tapetum) phenotype and restores the expression of the above transcription factors. Chromatin immunoprecipitation-quantitative polymerase chain reaction assay revealed that ARF8.1 directly targets the promoters of TDF1, AMS and MS188. In conclusion, the ARF8.1 isoform controls pollen and tapetum development acting directly on the expression of TDF1, AMS and MS188, which belong to the pollen/tapetum genetic pathway.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Factor VIII/genética , Factor VIII/metabolismo , Flores/genética , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Polen , Isoformas de Proteínas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Plant Cell Physiol ; 64(3): 317-324, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36611272

RESUMEN

During organogenesis, a key step toward the development of a functional organ is the separation of cells into specific domains with different activities. Mutual inhibition of gene expression has been shown to be sufficient to establish and maintain these domains during organogenesis in several multicellular organisms. Here, we show that the mutual inhibition between the PLETHORA transcription factors (PLTs) and the ARABIDOPSIS RESPONSE REGULATORs (ARRs) transcription factors is sufficient to separate cell division and cell differentiation during root organogenesis. In particular, we show that ARR1 suppresses PLT activities and that PLTs suppress ARR1 and ARR12 by targeting their proteins for degradation via the KISS ME DEADLY 2 F-box protein. These findings reveal new important aspects of the complex process of root zonation and development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Raíces de Plantas , Factores de Transcripción , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
EMBO J ; 37(16)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30012836

RESUMEN

In multicellular systems, the control of cell size is fundamental in regulating the development and growth of the different organs and of the whole organism. In most systems, major changes in cell size can be observed during differentiation processes where cells change their volume to adapt their shape to their final function. How relevant changes in cell volume are in driving the differentiation program is a long-standing fundamental question in developmental biology. In the Arabidopsis root meristem, characteristic changes in the size of the distal meristematic cells identify cells that initiated the differentiation program. Here, we show that changes in cell size are essential for the initial steps of cell differentiation and that these changes depend on the concomitant activation by the plant hormone cytokinin of the EXPAs proteins and the AHA1 and AHA2 proton pumps. These findings identify a growth module that builds on a synergy between cytokinin-dependent pH modification and wall remodeling to drive differentiation through the mechanical control of cell walls.


Asunto(s)
Arabidopsis/metabolismo , Diferenciación Celular/fisiología , Células Vegetales/metabolismo , Raíces de Plantas/metabolismo , Arabidopsis/citología , Proteínas de Arabidopsis/metabolismo , Citocininas/metabolismo , Raíces de Plantas/citología , ATPasas de Translocación de Protón/metabolismo
4.
Plant J ; 103(1): 379-394, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32142184

RESUMEN

In Arabidopsis, stamen elongation, which ensures male fertility, is controlled by the auxin response factor ARF8, which regulates the expression of the auxin repressor IAA19. Here, we uncover a role for light in controlling stamen elongation. By an extensive genetic and molecular analysis we show that the repressor of light signaling COP1, through its targets HY5 and HYH, controls stamen elongation, and that HY5 - oppositely to ARF8 - directly represses the expression of IAA19 in stamens. In addition, we show that in closed flower buds, when light is shielded by sepals and petals, the blue light receptors CRY1/CRY2 repress stamen elongation. Coherently, at flower disclosure and in subsequent stages, stamen elongation is repressed by the red and far-red light receptors PHYA/PHYB. In conclusion, different light qualities - sequentially perceived by specific photoreceptors - and the downstream COP1-HY5/HYH module finely tune auxin-induced stamen elongation and thus male fertility.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Criptocromos/fisiología , Proteínas de Unión al ADN/fisiología , Flores/crecimiento & desarrollo , Fitocromo/fisiología , Ubiquitina-Proteína Ligasas/fisiología , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Criptocromos/metabolismo , Proteínas de Unión al ADN/metabolismo , Flores/metabolismo , Flores/efectos de la radiación , Luz , Fitocromo/metabolismo , Fitocromo A/metabolismo , Fitocromo A/fisiología , Fitocromo B/metabolismo , Fitocromo B/fisiología , Ubiquitina-Proteína Ligasas/metabolismo
5.
Development ; 145(1)2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29158439

RESUMEN

A clear example of interspecific variation is the number of root cortical layers in plants. The genetic mechanisms underlying this variability are poorly understood, partly because of the lack of a convenient model. Here, we demonstrate that Cardamine hirsuta, unlike Arabidopsis thaliana, has two cortical layers that are patterned during late embryogenesis. We show that a miR165/6-dependent distribution of the HOMEODOMAIN LEUCINE ZIPPER III (HD-ZIPIII) transcription factor PHABULOSA (PHB) controls this pattern. Our findings reveal that interspecies variation in miRNA distribution can determine differences in anatomy in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cardamine/metabolismo , Proteínas de Homeodominio/metabolismo , MicroARNs/metabolismo , Raíces de Plantas/metabolismo , Arabidopsis/anatomía & histología , Cardamine/anatomía & histología , Raíces de Plantas/anatomía & histología
6.
Plant Cell ; 30(3): 620-637, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29514943

RESUMEN

In addition to the full-length transcript ARF8.1, a splice variant (ARF8.2) of the auxin response factor gene ARF8 has been reported. Here, we identified an intron-retaining variant of ARF8.2, ARF8.4, whose translated product is imported into the nucleus and has tissue-specific localization in Arabidopsis thaliana By inducibly expressing each variant in arf8-7 flowers, we show that ARF8.4 fully complements the short-stamen phenotype of the mutant and restores the expression of AUX/IAA19, encoding a key regulator of stamen elongation. By contrast, the expression of ARF8.2 and ARF8.1 had minor or no effects on arf8-7 stamen elongation and AUX/IAA19 expression. Coexpression of ARF8.2 and ARF8.4 in both the wild type and arf8-7 caused premature anther dehiscence: We show that ARF8.2 is responsible for increased expression of the jasmonic acid biosynthetic gene DAD1 and that ARF8.4 is responsible for premature endothecium lignification due to precocious expression of transcription factor gene MYB26 Finally, we show that ARF8.4 binds to specific auxin-related sequences in both the AUX/IAA19 and MYB26 promoters and activates their transcription more efficiently than ARF8.2. Our data suggest that ARF8.4 is a tissue-specific functional splice variant that controls filament elongation and endothecium lignification by directly regulating key genes involved in these processes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Flores/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Flores/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
7.
Proc Natl Acad Sci U S A ; 114(36): E7641-E7649, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28831001

RESUMEN

In multicellular organisms, a stringent control of the transition between cell division and differentiation is crucial for correct tissue and organ development. In the Arabidopsis root, the boundary between dividing and differentiating cells is positioned by the antagonistic interaction of the hormones auxin and cytokinin. Cytokinin affects polar auxin transport, but how this impacts the positional information required to establish this tissue boundary, is still unknown. By combining computational modeling with molecular genetics, we show that boundary formation is dependent on cytokinin's control on auxin polar transport and degradation. The regulation of both processes shapes the auxin profile in a well-defined auxin minimum. This auxin minimum positions the boundary between dividing and differentiating cells, acting as a trigger for this developmental transition, thus controlling meristem size.


Asunto(s)
Arabidopsis/metabolismo , Arabidopsis/fisiología , Diferenciación Celular/fisiología , División Celular/fisiología , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/fisiología , Citocininas/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Meristema/metabolismo , Meristema/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal/fisiología
8.
BMC Plant Biol ; 19(1): 429, 2019 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-31619182

RESUMEN

BACKGROUND: Polycomb repressive complex 2 (PRC2) is an epigenetic transcriptional repression system, whose catalytic subunit (ENHANCER OF ZESTE HOMOLOG 2, EZH2 in animals) is responsible for trimethylating histone H3 at lysine 27 (H3K27me3). In mammals, gain-of-function mutations as well as overexpression of EZH2 have been associated with several tumors, therefore making this subunit a suitable target for the development of selective inhibitors. Indeed, highly specific small-molecule inhibitors of EZH2 have been reported. In plants, mutations in some PRC2 components lead to embryonic lethality, but no trial with any inhibitor has ever been reported. RESULTS: We show here that the 1,5-bis (3-bromo-4-methoxyphenyl)penta-1,4-dien-3-one compound (RDS 3434), previously reported as an EZH2 inhibitor in human leukemia cells, is active on the Arabidopsis catalytic subunit of PRC2, since treatment with the drug reduces the total amount of H3K27me3 in a dose-dependent fashion. Consistently, we show that the expression level of two PRC2 targets is significantly increased following treatment with the RDS 3434 compound. Finally, we show that impairment of H3K27 trimethylation in Arabidopsis seeds and seedlings affects both seed germination and root growth. CONCLUSIONS: Our results provide a useful tool for the plant community in investigating how PRC2 affects transcriptional control in plant development.


Asunto(s)
Proteínas de Arabidopsis/antagonistas & inhibidores , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Histonas/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteína Potenciadora del Homólogo Zeste 2 , Inhibidores Enzimáticos/farmacología , Regulación del Desarrollo de la Expresión Génica , Lisina/metabolismo , Metilación , Complejo Represivo Polycomb 2 , Proteínas Represoras/genética , Rutina/análogos & derivados , Rutina/farmacología , Plantones/efectos de los fármacos , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Semillas/efectos de los fármacos , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo
9.
Proc Natl Acad Sci U S A ; 113(10): 2714-9, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26888286

RESUMEN

Factor H binding protein (fHbp) is a lipoprotein of Neisseria meningitidis important for the survival of the bacterium in human blood and a component of two recently licensed vaccines against serogroup B meningococcus (MenB). Based on 866 different amino acid sequences this protein is divided into three variants or two families. Quantification of the protein is done by immunoassays such as ELISA or FACS that are susceptible to the sequence variation and expression level of the protein. Here, selected reaction monitoring mass spectrometry was used for the absolute quantification of fHbp in a large panel of strains representative of the population diversity of MenB. The analysis revealed that the level of fHbp expression can vary at least 15-fold and that variant 1 strains express significantly more protein than variant 2 or variant 3 strains. The susceptibility to complement-mediated killing correlated with the amount of protein expressed by the different meningococcal strains and this could be predicted from the nucleotide sequence of the promoter region. Finally, the absolute quantification allowed the calculation of the number of fHbp molecules per cell and to propose a mechanistic model of the engagement of C1q, the recognition component of the complement cascade.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Neisseria meningitidis Serogrupo B/metabolismo , Secuencia de Aminoácidos , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Variación Genética , Humanos , Espectrometría de Masas/métodos , Meningitis Meningocócica/inmunología , Meningitis Meningocócica/microbiología , Vacunas Meningococicas/inmunología , Neisseria meningitidis Serogrupo B/clasificación , Neisseria meningitidis Serogrupo B/genética , Filogenia , Especificidad de la Especie
10.
Int J Mol Sci ; 20(3)2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30736391

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disorder and the primary form of dementia in the elderly. One of the main features of AD is the increase in amyloid-beta (Aß) peptide production and aggregation, leading to oxidative stress, neuroinflammation and neurodegeneration. Polyphenols are well known for their antioxidant, anti-inflammatory and neuroprotective effects and have been proposed as possible therapeutic agents against AD. Here, we investigated the effects of a polyphenolic extract of Arabidopsis thaliana (a plant belonging to the Brassicaceae family) on inflammatory response induced by Aß. BV2 murine microglia cells treated with both Aß25⁻35 peptide and extract showed a lower pro-inflammatory (IL-6, IL-1ß, TNF-α) and a higher anti-inflammatory (IL-4, IL-10, IL-13) cytokine production compared to cells treated with Aß only. The activation of the Nrf2-antioxidant response element signaling pathway in treated cells resulted in the upregulation of heme oxygenase-1 mRNA and in an increase of NAD(P)H:quinone oxidoreductase 1 activity. To establish whether the extract is also effective against Aß-induced neurotoxicity in vivo, we evaluated its effect on the impaired climbing ability of AD Drosophila flies expressing human Aß1⁻42. Arabidopsis extract significantly restored the locomotor activity of these flies, thus confirming its neuroprotective effects also in vivo. These results point to a protective effect of the Arabidopsis extract in AD, and prompt its use as a model in studying the impact of complex mixtures derived from plant-based food on neurodegenerative diseases.


Asunto(s)
Antiinflamatorios/química , Antiinflamatorios/farmacología , Arabidopsis/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polifenoles/química , Polifenoles/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Citocinas/genética , Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Mediadores de Inflamación/metabolismo , Locomoción/efectos de los fármacos , Espectrometría de Masas , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fitoquímicos/química , Transporte de Proteínas
11.
BMC Plant Biol ; 18(1): 356, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30558541

RESUMEN

BACKGROUND: In many plants, the amino acid proline is strongly accumulated in pollen and disruption of proline synthesis caused abortion of microspore development in Arabidopsis. So far, it was unclear whether local biosynthesis or transport of proline determines the success of fertile pollen development. RESULTS: We analyzed the expression pattern of the proline biosynthetic genes PYRROLINE-5-CARBOXYLATE SYNTHETASE 1 & 2 (P5CS1 & 2) in Arabidopsis anthers and both isoforms were strongly expressed in developing microspores and pollen grains but only inconsistently in surrounding sporophytic tissues. We introduced in a p5cs1/p5cs1 p5cs2/P5CS2 mutant background an additional copy of P5CS2 under the control of the Cauliflower Mosaic Virus (CaMV) 35S promoter, the tapetum-specific LIPID TRANSFER PROTEIN 12 (Ltp12) promoter or the pollen-specific At5g17340 promoter to determine in which site proline biosynthesis can restore the fertility of proline-deficient microspores. The specificity of these promoters was confirmed by ß-glucuronidase (GUS) analysis, and by direct proline measurement in pollen grains and stage-9/10 anthers. Expression of P5CS2 under control of the At5g17340 promoter fully rescued proline content and normal morphology and fertility of mutant pollen. In contrast, expression of P5CS2 driven by either the Ltp12 or CaMV35S promoter caused only partial restoration of pollen development with little effect on pollen fertility. CONCLUSIONS: Overall, our results indicate that proline transport is not able to fulfill the demand of the cells of the male germ line. Pollen development and fertility depend on local proline biosynthesis during late stages of microspore development and in mature pollen grains.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Glutamato-5-Semialdehído Deshidrogenasa/genética , Complejos Multienzimáticos/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Polen/crecimiento & desarrollo , Polen/genética , Prolina/biosíntesis , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fertilidad , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Glutamato-5-Semialdehído Deshidrogenasa/metabolismo , Complejos Multienzimáticos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Esporas/genética
12.
Molecules ; 23(6)2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29914046

RESUMEN

Currently licensed glycoconjugate vaccines are composed of a carbohydrate moiety covalently linked to a protein carrier. Polysaccharides are T-cell independent antigens able to directly stimulate B cells to produce antibodies. Disease burden caused by polysaccharide-encapsulated bacteria is highest in the first year of life, where plain polysaccharides are not generally immunogenic, limiting their use as vaccines. This limitation has been overcome by covalent coupling carbohydrate antigens to proteins that provide T cell epitopes. In addition to the protein carriers currently used in licensed glycoconjugate vaccines, there is a search for new protein carriers driven by several considerations: (i) concerns that pre-exposure or co-exposure to a given carrier can lead to immune interference and reduction of the anti-carbohydrate immune response; (ii) increasing interest to explore the dual role of proteins as carrier and protective antigen; and (iii) new ways to present carbohydrates antigens to the immune system. Protein carriers can be directly coupled to activated glycans or derivatized to introduce functional groups for subsequent conjugation. Proteins can be genetically modified to pre-determine the site of glycans attachment by insertion of unnatural amino acids bearing specific functional groups, or glycosylation consensus sequences for in vivo expression of the glycoconjugate. A large portion of the new protein carriers under investigation are recombinant ones, but more complex systems such as Outer Membrane Vesicles and other nanoparticles are being investigated. Selection criteria for new protein carriers are based on several aspects including safety, manufacturability, stability, reactivity toward conjugation, and preclinical evidence of immunogenicity of corresponding glycoconjugates. Characterization panels of protein carriers include tests before conjugation, after derivatization when applicable, and after conjugation. Glycoconjugate vaccines based on non-covalent association of carrier systems to carbohydrates are being investigated with promising results in animal models. The ability of these systems to convert T-independent carbohydrate antigens into T-dependent ones, in comparison to traditional glycoconjugates, needs to be assessed in humans.


Asunto(s)
Proteínas Portadoras/química , Vacunas Conjugadas/inmunología , Animales , Epítopos de Linfocito T/química , Epítopos de Linfocito T/inmunología , Glicoconjugados/inmunología , Humanos
13.
New Phytol ; 213(3): 1194-1207, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27659765

RESUMEN

Here, we investigated the role of auxin distribution in controlling Arabidopsis thaliana late stamen development. We analysed auxin distribution in anthers by monitoring DR5 activity: at different flower developmental stages; inhibiting auxin transport; in the rpk2-3 and ems1 mutants devoid of middle layer (ML) or tapetum, respectively; and in the auxin biosynthesis yuc6 and perception afb1-3 mutants. We ran a phenotypic, DR5::GUS and gene expression analysis of yuc6rpk2 and afb1rpk2 double mutants, and of 1-N-naphthylphthalamic acid (NPA)-treated flower buds. We show that an auxin maximum, caused by transport from the tapetum, is established in the ML at the inception of late stamen development. rpk2-3 mutant stamens lacking the ML have an altered auxin distribution with excessive accumulation in adjacent tissues, causing non-functional pollen grains, indehiscent anthers and reduced filament length; the expression of genes controlling stamen development is also altered in rpk2-3 as well as in NPA-treated flower buds. By decreasing auxin biosynthesis or perception in the rpk2-3 background, we eliminated these developmental and gene expression anomalies. We propose that the auxin maximum in the ML plays a key role in late stamen development, as it ensures correct and coordinated pollen maturation, anther dehiscence and filament elongation.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Ácidos Indolacéticos/farmacología , Polen/crecimiento & desarrollo , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Genes Reporteros , Modelos Biológicos , Especificidad de Órganos/genética , Polen/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo
15.
BMC Plant Biol ; 16(1): 198, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27613195

RESUMEN

BACKGROUND: In seeds, the transition from dormancy to germination is regulated by abscisic acid (ABA) and gibberellins (GAs), and involves chromatin remodelling. Particularly, the repressive mark H3K27 trimethylation (H3K27me3) has been shown to target many master regulators of this transition. DAG1 (DOF AFFECTING GERMINATION1), is a negative regulator of seed germination in Arabidopsis, and directly represses the GA biosynthetic gene GA3ox1 (gibberellin 3-ß-dioxygenase 1). We set to investigate the role of DAG1 in seed dormancy and maturation with respect to epigenetic and hormonal control. RESULTS: We show that DAG1 expression is controlled at the epigenetic level through the H3K27me3 mark during the seed-to-seedling transition, and that DAG1 directly represses also the ABA catabolic gene CYP707A2; consistently, the ABA level is lower while the GA level is higher in dag1 mutant seeds. Furthermore, both DAG1 expression and protein stability are controlled by GAs. CONCLUSIONS: Our results point to DAG1 as a key player in the control of the developmental switch between seed dormancy and germination.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Giberelinas/metabolismo , Plantones/metabolismo , Semillas/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Plantones/genética , Plantones/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo , Factores de Transcripción/genética
16.
Planta ; 243(5): 1159-68, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26848984

RESUMEN

MAIN CONCLUSION: SCARECROW controls Arabidopsis root meristem size from the root endodermis tissue by regulating the DELLA protein RGA that in turn mediates the regulation of ARR1 levels at the transition zone. Coherent organ growth requires a fine balance between cell division and cell differentiation. Intriguingly, plants continuously develop organs post-embryonically thanks to the activity of meristems that allow growth and environmental plasticity. In Arabidopsis thaliana, continued root growth is assured when division of the distal stem cell and their daughters is balanced with cell differentiation at the meristematic transition zone (TZ). We have previously shown that at the TZ, the cytokinin-dependent transcription factor ARR1 controls the rate of differentiation commitment of meristematic cells and that its activities are coordinated with those of the distal stem cells by the gene SCARECROW (SCR). In the stem cell organizer (the quiescent center, QC), SCR directly suppresses ARR1 both sustaining stem cell activities and titrating non-autonomously the ARR1 transcript levels at the TZ via auxin. Here, we show that SCR also exerts a fine control on ARR1 levels at the TZ from the endodermis by sustaining gibberellin signals. From the endodermis, SCR controls the RGA REPRESSOR OF ga1-3 (RGA) DELLA protein stability throughout the root meristem, thus controlling ARR1 transcriptional activation at the TZ. This guarantees robustness and fineness to the control of ARR1 levels necessary to balance cell division to cell differentiation in sustaining coherent root growth. Therefore, this work advances the state of the art in the field of root meristem development by integrating the activity of three hormones, auxin, gibberellin, and cytokinin, under the control of different tissue-specific activities of a single root key regulator, SCR.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Meristema/genética , Raíces de Plantas/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Diferenciación Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Meristema/citología , Células Vegetales/fisiología , Raíces de Plantas/crecimiento & desarrollo , Procesamiento Proteico-Postraduccional , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
Expert Rev Proteomics ; 13(1): 55-68, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26714563

RESUMEN

Vaccines are the most effective way to fight infectious diseases saving countless lives since their introduction. Their evolution during the last century made use of the best technologies available to continuously increase their efficacy and safety. Mass spectrometry (MS) and proteomics are already playing a central role in the identification and characterization of novel antigens. Over the last years, we have been witnessing the emergence of structural proteomics in vaccinology, as a major tool for vaccine candidate discovery, antigen design and life cycle management of existing products. In this review, we describe the MS techniques associated to structural proteomics and we illustrate the contribution of structural proteomics to vaccinology discussing potential applications.


Asunto(s)
Proteómica/métodos , Vacunas/química , Animales , Antígenos/química , Antígenos/inmunología , Antígenos/aislamiento & purificación , Medición de Intercambio de Deuterio , Mapeo Epitopo , Humanos , Espectrometría de Masas , Conformación Proteica , Vacunas/inmunología , Vacunas/aislamiento & purificación
18.
Plant Cell ; 25(11): 4469-78, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24285791

RESUMEN

Maintenance of mitotic cell clusters such as meristematic cells depends on their capacity to maintain the balance between cell division and cell differentiation necessary to control organ growth. In the Arabidopsis thaliana root meristem, the antagonistic interaction of two hormones, auxin and cytokinin, regulates this balance by positioning the transition zone, where mitotically active cells lose their capacity to divide and initiate their differentiation programs. In animals, a major regulator of both cell division and cell differentiation is the tumor suppressor protein RETINOBLASTOMA. Here, we show that similarly to its homolog in animal systems, the plant RETINOBLASTOMA-RELATED (RBR) protein regulates the differentiation of meristematic cells at the transition zone by allowing mRNA accumulation of AUXIN RESPONSE FACTOR19 (ARF19), a transcription factor involved in cell differentiation. We show that both RBR and the cytokinin-dependent transcription factor ARABIDOPSIS RESPONSE REGULATOR12 are required to activate the transcription of ARF19, which is involved in promoting cell differentiation and thus root growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocininas/metabolismo , Meristema/citología , Raíces de Plantas/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Diferenciación Celular , Regulación de la Expresión Génica de las Plantas , Histidina Quinasa , Meristema/genética , Meristema/metabolismo , Raíces de Plantas/citología , Plantas Modificadas Genéticamente , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
Proc Natl Acad Sci U S A ; 110(47): 19077-82, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24191022

RESUMEN

Neisseria meningitidis is a major cause of bacterial meningitis worldwide, especially in the African meningitis belt, and has a high associated mortality. The meningococcal serogroups A, W, and X have been responsible for epidemics and almost all cases of meningococcal meningitis in the meningitis belt over the past 12 y. Currently no vaccine is available against meningococcal X (MenX). Because the development of a new vaccine through to licensure takes many years, this leaves Africa vulnerable to new epidemics of MenX meningitis at a time when the epidemiology of meningococcal meningitis on the continent is changing rapidly, following the recent introduction of a glycoconjugate vaccine against serogroup A. Here, we report the development of candidate glycoconjugate vaccines against MenX and preclinical data from their use in animal studies. Following optimization of growth conditions of our seed MenX strain for polysaccharide (PS) production, a scalable purification process was developed yielding high amounts of pure MenX PS. Different glycoconjugates were synthesized by coupling MenX oligosaccharides of varying chain length to CRM197 as carrier protein. Analytical methods were developed for in-process control and determination of purity and consistency of the vaccines. All conjugates induced high anti-MenX PS IgG titers in mice. Antibodies were strongly bactericidal against African MenX isolates. These findings support the further development of glycoconjugate vaccines against MenX and their assessment in clinical trials to produce a vaccine against the one cause of epidemic meningococcal meningitis that currently cannot be prevented by available vaccines.


Asunto(s)
Brotes de Enfermedades/prevención & control , Glicoconjugados/biosíntesis , Meningitis Meningocócica/epidemiología , Meningitis Meningocócica/prevención & control , Vacunas Meningococicas/biosíntesis , Neisseria meningitidis/genética , África del Sur del Sahara/epidemiología , Animales , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Glicoconjugados/inmunología , Humanos , Espectroscopía de Resonancia Magnética , Meningitis Meningocócica/inmunología , Vacunas Meningococicas/inmunología , Ratones , Neisseria meningitidis/metabolismo , Polisacáridos Bacterianos/aislamiento & purificación , Polisacáridos Bacterianos/metabolismo
20.
BMC Plant Biol ; 15: 263, 2015 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-26514776

RESUMEN

BACKGROUND: We reported previously that root elongation in Arabidopsis is promoted by exogenous proline, raising the possibility that this amino acid may modulate root growth. RESULTS: To evaluate this hypothesis we used a combination of genetic, pharmacological and molecular analyses, and showed that proline specifically affects root growth by modulating the size of the root meristem. The effects of proline on meristem size are parallel to, and independent from, hormonal pathways, and do not involve the expression of genes controlling cell differentiation at the transition zone. On the contrary, proline appears to control cell division in early stages of postembryonic root development, as shown by the expression of the G2/M-specific CYCLINB1;1 (CYCB1;1) gene. CONCLUSIONS: The overall data suggest that proline can modulate the size of root meristematic zone in Arabidopsis likely controlling cell division and, in turn, the ratio between cell division and cell differentiation.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Meristema/anatomía & histología , Meristema/crecimiento & desarrollo , Prolina/farmacología , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Mutación/genética , Tamaño de los Órganos/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA