Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nature ; 621(7977): 146-153, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37648853

RESUMEN

Learning and memory are thought to require hippocampal long-term potentiation (LTP), and one of the few central dogmas of molecular neuroscience that has stood undisputed for more than three decades is that LTP induction requires enzymatic activity of the Ca2+/calmodulin-dependent protein kinase II (CaMKII)1-3. However, as we delineate here, the experimental evidence is surprisingly far from conclusive. All previous interventions inhibiting enzymatic CaMKII activity and LTP4-8 also interfere with structural CaMKII roles, in particular binding to the NMDA-type glutamate receptor subunit GluN2B9-14. Thus, we here characterized and utilized complementary sets of new opto-/pharmaco-genetic tools to distinguish between enzymatic and structural CaMKII functions. Several independent lines of evidence demonstrated LTP induction by a structural function of CaMKII rather than by its enzymatic activity. The sole contribution of kinase activity was autoregulation of this structural role via T286 autophosphorylation, which explains why this distinction has been elusive for decades. Directly initiating the structural function in a manner that circumvented this T286 role was sufficient to elicit robust LTP, even when enzymatic CaMKII activity was blocked.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Potenciación a Largo Plazo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/química , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Ácido Glutámico/metabolismo , Hipocampo/fisiología , Aprendizaje/fisiología , Potenciación a Largo Plazo/fisiología , Optogenética , Fosforilación , Unión Proteica
2.
J Biol Chem ; 293(5): 1551-1567, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29196604

RESUMEN

Both long-term potentiation (LTP) and depression (LTD) of excitatory synapse strength require the Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) and its autonomous activity generated by Thr-286 autophosphorylation. Additionally, LTP and LTD are correlated with dendritic spine enlargement and shrinkage that are accompanied by the synaptic accumulation or removal, respectively, of the AMPA-receptor regulatory scaffold protein A-kinase anchoring protein (AKAP) 79/150. We show here that the spine shrinkage associated with LTD indeed requires synaptic AKAP79/150 removal, which in turn requires CaMKII activity. In contrast to normal CaMKII substrates, the substrate sites within the AKAP79/150 N-terminal polybasic membrane-cytoskeletal targeting domain were phosphorylated more efficiently by autonomous compared with Ca2+/CaM-stimulated CaMKII activity. This unusual regulation was mediated by Ca2+/CaM binding to the substrate sites resulting in protection from phosphorylation in the presence of Ca2+/CaM, a mechanism that favors phosphorylation by prolonged, weak LTD stimuli versus brief, strong LTP stimuli. Phosphorylation by CaMKII inhibited AKAP79/150 association with F-actin; it also facilitated AKAP79/150 removal from spines but was not required for it. By contrast, LTD-induced spine removal of AKAP79/150 required its depalmitoylation on two Cys residues within the N-terminal targeting domain. Notably, such LTD-induced depalmitoylation was also blocked by CaMKII inhibition. These results provide a mechanism how CaMKII can indeed mediate not only LTP but also LTD through regulated substrate selection; however, in the case of AKAP79/150, indirect CaMKII effects on palmitoylation are more important than the effects of direct phosphorylation. Additionally, our results provide the first direct evidence for a function of the well-described AKAP79/150 trafficking in regulating LTD-induced spine shrinkage.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Lipoilación , Potenciación a Largo Plazo , Depresión Sináptica a Largo Plazo , Procesamiento Proteico-Postraduccional , Columna Vertebral/metabolismo , Sinapsis/metabolismo , Animales , Humanos , Columna Vertebral/patología , Sinapsis/patología
3.
J Biol Chem ; 289(28): 19458-65, 2014 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-24855644

RESUMEN

Both signaling by nitric oxide (NO) and by the Ca(2+)/calmodulin (CaM)-dependent protein kinase II α isoform (CaMKIIα) are implicated in two opposing forms of synaptic plasticity underlying learning and memory, as well as in excitotoxic/ischemic neuronal cell death. For CaMKIIα, these functions specifically involve also Ca(2+)-independent autonomous activity, traditionally generated by Thr-286 autophosphorylation. Here, we demonstrate that NO-induced S-nitrosylation of CaMKIIα also directly generated autonomous activity, and that CaMKII inhibition protected from NO-induced neuronal cell death. NO induced S-nitrosylation at Cys-280/289, and mutation of either site abolished autonomy, indicating that simultaneous nitrosylation at both sites was required. Additionally, autonomy was generated only when Ca(2+)/CaM was present during NO exposure. Thus, generation of this form of CaMKIIα autonomy requires simultaneous signaling by NO and Ca(2+). Nitrosylation also significantly reduced subsequent CaMKIIα autophosphorylation specifically at Thr-286, but not at Thr-305. A previously described reduction of CaMKII activity by S-nitrosylation at Cys-6 was also observed here, but only after prolonged (>5 min) exposure to NO donors. These results demonstrate a novel regulation of CaMKII by another second messenger system and indicate its involvement in excitotoxic neuronal cell death.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Neuronas/metabolismo , Óxido Nítrico/metabolismo , Sistemas de Mensajero Secundario/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Muerte Celular/fisiología , Células HEK293 , Humanos , Neuronas/citología , Óxido Nítrico/genética , Fosforilación/fisiología
4.
FASEB J ; 28(8): 3810-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24843070

RESUMEN

A hallmark feature of Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) is generation of autonomous (Ca(2+)-independent) activity by T286 autophosphorylation. Biochemical studies have shown that "autonomous" CaMKII is ∼5-fold further stimulated by Ca(2+)/CaM, but demonstration of a physiological function for such regulation within cells has remained elusive. In this study, CaMKII-induced enhancement of synaptic strength in rat hippocampal neurons required both autonomous activity and further stimulation. Synaptic strength was decreased by CaMKIIα knockdown and rescued by reexpression, but not by mutants impaired for autonomy (T286A) or binding to NMDA-type glutamate receptor subunit 2B (GluN2B; formerly NR2B; I205K). Full rescue was seen with constitutively autonomous mutants (T286D), but only if they could be further stimulated (additional T305/306A mutation), and not with two other mutations that additionally impair Ca(2+)/CaM binding. Compared to rescue with wild-type CaMKII, the CaM-binding-impaired mutants even had reduced synaptic strength. One of these mutants (T305/306D) mimicked an inhibitory autophosphorylation of CaMKII, whereas the other one (Δstim) abolished CaM binding without introducing charged residues. Inhibitory T305/306 autophosphorylation also reduced GluN2B binding, but this effect was independent of reduced Ca(2+)/CaM binding and was not mimicked by T305/306D mutation. Thus, even autonomous CaMKII activity must be further stimulated by Ca(2+)/CaM for enhancement of synaptic strength.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/fisiología , Calcio/fisiología , Calmodulina/fisiología , Sinapsis/enzimología , Potenciales de Acción , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Activación Enzimática , Potenciales Postsinápticos Excitadores/fisiología , Genes Reporteros , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Hipocampo/citología , Potenciales Postsinápticos Miniatura/fisiología , Mutación Missense , Neuronas/enzimología , Neuronas/fisiología , Fosforilación , Mutación Puntual , Unión Proteica , Procesamiento Proteico-Postraduccional , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Ratas , Receptores de N-Metil-D-Aspartato/fisiología , Sinapsis/fisiología
5.
Mol Pharmacol ; 84(6): 834-43, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24056996

RESUMEN

Binding of the Ca²âº/calmodulin (CaM)-dependent protein kinase II (CaMKII) to the NMDA-type glutamate receptor subunit GluN2B is an important control mechanism for the regulation of synaptic strength. CaMKII binding to GluN2B and CaMKII translocation to synapses are induced by an initial Ca²âº/CaM stimulus, which also activates the kinase. Indeed, several mechanistically different CaMKII inhibitors [tatCN21 and KN-93 (N-[2-[[[3-(4-chlorophenyl)-2-propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulphonamide)] and inactivating mutations (K42M, A302R, and T305/T306D) impair this interaction, suggesting that it requires CaMKII enzymatic activity. However, this study shows that two general kinase inhibitors, H7 [1-(5-isoquinolinylsulfonyl)-2-methylpiperazine] and staurosporine (Sta), which inhibit CaMKII activity by yet another mechanism, did not interfere with GluN2B binding in vitro or within cells. In contrast to a previous report, we found that Sta, like H7, inhibited CaMKII in an ATP-competitive manner. Nucleotide binding significantly enhances CaMKII/GluN2B binding in vitro, but the nucleotide competition by H7 or Sta did not prevent this effect and instead even mimicked it. H7 (700 µM) and Sta (2 µM) efficiently blocked enzymatic activity of CaMKII, both in vitro and within cells. However, neither H7 nor Sta prevented Ca²âº-induced translocation of CaMKII to GluN2B in heterologous cells or to synapses in hippocampal neurons. Thus, activity of CaMKII (or of any other kinase inhibited by H7 or Sta) is not required for stimulation-induced GluN2B-binding or synaptic translocation of CaMKII, despite previous indication to the contrary. This shows that results with inhibitors and inhibiting mutants can be caused by structural effects independent from catalytic activity, and that detailed understanding of the mechanisms is required for their interpretation.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Células Cultivadas , Femenino , Ácido Glutámico/farmacología , Células HEK293 , Humanos , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosforilación , Unión Proteica , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley , Estaurosporina/farmacología , Sinapsis/metabolismo
6.
Sci Signal ; 16(795): eade5892, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37490545

RESUMEN

CaMKII has molecular memory functions because transient calcium ion stimuli can induce long-lasting increases in its synaptic localization and calcium ion-independent (autonomous) activity, thereby leaving memory traces of calcium ion stimuli beyond their duration. The synaptic effects of two mechanisms that induce CaMKII autonomy are well studied: autophosphorylation at threonine-286 and binding to GluN2B. Here, we examined the neuronal functions of additional autonomy mechanisms: nitrosylation and oxidation of the CaMKII regulatory domain. We generated a knock-in mouse line with mutations that render the CaMKII regulatory domain nitrosylation/oxidation-incompetent, CaMKIIΔSNO, and found that it had deficits in memory and synaptic plasticity that were similar to those in aged wild-type mice. In addition, similar to aged wild-type mice, in which CaMKII was hyponitrosylated, but unlike mice with impairments of other CaMKII autonomy mechanisms, CaMKIIΔSNO mice showed reduced long-term potentiation (LTP) when induced by theta-burst stimulation but not high-frequency stimulation (HFS). As in aged wild-type mice, the HFS-LTP in the young adult CaMKIIΔSNO mice required L-type voltage-gated calcium ion channels. The effects in aged mice were likely caused by the loss of nitrosylation because no decline in CaMKII oxidation was detected. In hippocampal neurons, nitrosylation of CaMKII induced its accumulation at synapses under basal conditions in a manner mediated by GluN2B binding, like after LTP stimuli. However, LTP-induced synaptic CaMKII accumulation did not require nitrosylation. Thus, an aging-associated decrease in CaMKII nitrosylation may cause impairments by chronic synaptic effects, such as the decrease in basal synaptic CaMKII.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Calcio , Animales , Ratones , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Hipocampo/metabolismo , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal , Fosforilación , Sinapsis/metabolismo
7.
J Biol Chem ; 286(36): 31272-81, 2011 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-21768120

RESUMEN

The Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) and the NMDA-type glutamate receptor are key regulators of synaptic plasticity underlying learning and memory. Direct binding of CaMKII to the NMDA receptor subunit GluN2B (formerly known as NR2B) (i) is induced by Ca(2+)/CaM but outlasts this initial Ca(2+)-stimulus, (ii) mediates CaMKII translocation to synapses, and (iii) regulates synaptic strength. CaMKII binds to GluN2B around S1303, the major CaMKII phosphorylation site on GluN2B. We show here that a phospho-mimetic S1303D mutation inhibited CaM-induced CaMKII binding to GluN2B in vitro, presenting a conundrum how binding can occur within cells, where high ATP concentration should promote S1303 phosphorylation. Surprisingly, addition of ATP actually enhanced the binding. Mutational analysis revealed that this positive net effect was caused by four modulatory effects of ATP, two positive (direct nucleotide binding and CaMKII T286 autophosphorylation) and two negative (GluN2B S1303 phosphorylation and CaMKII T305/6 autophosphorylation). Imaging showed positive regulation by nucleotide binding also within transfected HEK cells and neurons. In fact, nucleotide binding was a requirement for efficient CaMKII interaction with GluN2B in cells, while T286 autophosphorylation was not. Kinetic considerations support a model in which positive regulation by nucleotide binding and T286 autophosphorylation occurs faster than negative modulation by GluN2B S1303 and CaMKII T305/6 phosphorylation, allowing efficient CaMKII binding to GluN2B despite the inhibitory effects of the two slower reactions.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Nucleótidos/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , Línea Celular , Humanos , Cinética , Fosforilación , Unión Proteica , Subunidades de Proteína
8.
iScience ; 25(6): 104368, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35620430

RESUMEN

Aß bears homology to the CaMKII regulatory domain, and peptides derived from this domain can bind and disrupt the CaMKII holoenzyme, suggesting that Aß could have a similar effect. Notably, Aß impairs the synaptic CaMKII accumulation that is mediated by GluN2B binding, which requires CaMKII assembly into holoenzymes. Furthermore, this Aß-induced impairment is prevented by CaMKII inhibitors that should also inhibit the putative direct Aß binding. However, our study did not find any evidence for direct effects of Aß on CaMKII: Aß did not directly disrupt CaMKII holoenzymes, GluN2B binding, T286 autophosphorylation, or kinase activity in vitro. Most importantly, in neurons, the Aß-induced impairment of CaMKII synaptic accumulation was prevented by an ATP-competitive CaMKII inhibitor that would not interfere with the putative direct Aß binding. Together, our results indicate that synaptic Aß effects are not mediated by direct binding to CaMKII, but instead require CaMKII activation via indirect signaling events.

9.
J Neurosci ; 30(24): 8214-20, 2010 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-20554872

RESUMEN

Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) "autonomy" (T286-autophosphorylation-induced Ca(2+)-independent activity) is required for long-term potentiation (LTP) and for learning and memory, as demonstrated by CaMKII T286A mutant mice. The >20-year-old hypothesis that CaMKII stimulation is required for LTP induction, while CaMKII autonomy is required for LTP maintenance was recently supported using the cell-penetrating fusion-peptide inhibitor antCN27. However, we demonstrate here that ant/penetratin fusion to CN27 compromised CaMKII-selectivity, by enhancing a previously unnoticed direct binding of CaM to ant/penetratin. In contrast to antCN27, the improved cell-penetrating inhibitor tatCN21 (5 mum) showed neither CaM binding nor inhibition of basal synaptic transmission. In vitro, tatCN21 inhibited stimulated and autonomous CaMKII activity with equal potency. In rat hippocampal slices, tatCN21 inhibited LTP induction, but not LTP maintenance. Correspondingly, tatCN21 also inhibited learning, but not memory storage or retrieval in a mouse in vivo model. Thus, CaMKII autonomy provides a short-term molecular memory that is important in the signal computation leading to memory formation, but is not required as long-term memory store.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Neuronas/fisiología , Animales , Conducta Animal , Bencilaminas/farmacología , Proteínas Portadoras/metabolismo , Péptidos de Penetración Celular , Condicionamiento Clásico/efectos de los fármacos , Condicionamiento Clásico/fisiología , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica/métodos , Hipocampo/citología , Técnicas In Vitro , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Ratones , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , Fragmentos de Péptidos/farmacología , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/farmacología , Sulfonamidas/farmacología , Proteínas Virales de Fusión
10.
Mol Pharmacol ; 80(3): 529-37, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21680777

RESUMEN

The hippocampal N-methyl-D-aspartate receptor (NMDAR) activity plays important roles in cognition and is a major substrate for ethanol-induced memory dysfunction. This receptor is a glutamate-gated ion channel, which is composed of NR1 and NR2 subunits in various brain areas. Although homomeric NR1 subunits form an active ion channel that conducts Na⁺ and Ca²âº currents, the incorporation of NR2 subunits allows this channel to be modulated by the Src family of kinases, phosphatases, and by simple molecules such as ethanol. We have found that short-term ethanol application inhibits the NMDAR activity via striatal enriched protein tyrosine phosphatase (STEP)-regulated mechanisms. The genetic deletion of the active form of STEP, STEP61, leads to marked attenuation of ethanol inhibition of NMDAR currents. In addition, STEP61 negatively regulates Fyn and p38 mitogen-activated protein kinase (MAPK), and these proteins are members of the NMDAR super molecular complex. Here we demonstrate, using whole-cell electrophysiological recording, Western blot analysis, and pharmacological manipulations, that neurons exposed to a 3-h, 45 mM ethanol treatment develop an adaptive attenuation of short-term ethanol inhibition of NMDAR currents in brain slices. Our results suggest that this adaptation of NMDAR responses is associated with a partial inactivation of STEP61, an activation of p38 MAPK, and a requirement for NR2B activity. Together, these data indicate that altered STEP61 and p38 MAPK signaling contribute to the modulation of ethanol inhibition of NMDARs in brain neurons.


Asunto(s)
Adaptación Fisiológica , Cuerpo Estriado/efectos de los fármacos , Etanol/farmacología , Proteínas Tirosina Fosfatasas/metabolismo , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Cuerpo Estriado/enzimología , Cuerpo Estriado/metabolismo , Activación Enzimática , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/fisiología
11.
J Biol Chem ; 285(27): 20675-82, 2010 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-20424167

RESUMEN

Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) is a major mediator of physiological glutamate signaling involved in higher brain functions. Here, we show CaMKII involvement in pathological glutamate signaling relevant in stroke. The novel inhibitor tatCN21 was neuroprotective even when added hours after glutamate insults. By contrast, the "traditional" inhibitor KN93 attenuated excitotoxicity only when present during the insult. Both inhibitors efficiently blocked Ca(2+)/CaM-stimulated CaMKII activity, CaMKII interaction with NR2B and aggregation of CaMKII holoenzymes. However, only tatCN21 but not KN93 blocked the Ca(2+)-independent "autonomous" activity generated by Thr-286 autophosphorylation, the hallmark feature of CaMKII regulation. Mutational analysis further validated autonomous CaMKII activity as the drug target crucial for post-insult neuroprotection. Overexpression of CaMKII wild type but not the autonomy-deficient T286A mutant significantly increased glutamate-induced neuronal death. Maybe most importantly, tatCN21 also significantly reduced infarct size in a mouse stroke model (middle cerebral arterial occlusion) when injected (1 mg/kg intravenously) 1 h after onset of arterial occlusion. Together, these data demonstrate that inhibition of autonomous CaMKII activity provides a promising therapeutic avenue for post-insult neuro-protection after stroke.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Fármacos Neuroprotectores/farmacología , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Bencilaminas/farmacología , Calcio/farmacología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Calmodulina/farmacología , Muerte Celular , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Regulación Enzimológica de la Expresión Génica , Productos del Gen tat/química , Productos del Gen tat/farmacología , Hipocampo/citología , Hipocampo/fisiología , Ratones , Datos de Secuencia Molecular , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Fragmentos de Péptidos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/fisiología , Accidente Cerebrovascular/tratamiento farmacológico , Sulfonamidas/farmacología
12.
J Biol Chem ; 285(23): 17930-7, 2010 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-20353941

RESUMEN

A hallmark feature of Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) regulation is the generation of Ca(2+)-independent autonomous activity by Thr-286 autophosphorylation. CaMKII autonomy has been regarded a form of molecular memory and is indeed important in neuronal plasticity and learning/memory. Thr-286-phosphorylated CaMKII is thought to be essentially fully active ( approximately 70-100%), implicating that it is no longer regulated and that its dramatically increased Ca(2+)/CaM affinity is of minor functional importance. However, this study shows that autonomy greater than 15-25% was the exception, not the rule, and required a special mechanism (T-site binding; by the T-substrates AC2 or NR2B). Autonomous activity toward regular R-substrates (including tyrosine hydroxylase and GluR1) was significantly further stimulated by Ca(2+)/CaM, both in vitro and within cells. Altered K(m) and V(max) made autonomy also substrate- (and ATP) concentration-dependent, but only over a narrow range, with remarkable stability at physiological concentrations. Such regulation still allows molecular memory of previous Ca(2+) signals, but prevents complete uncoupling from subsequent cellular stimulation.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/química , Adenosina Trifosfato/química , Animales , Calcio/metabolismo , Calmodulina/química , Línea Celular , Humanos , Cinética , Células PC12 , Péptidos/química , Fosforilación , Unión Proteica , Ratas , Transducción de Señal , Especificidad por Sustrato
13.
Acta Pharmacol Sin ; 32(7): 861-72, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21685929

RESUMEN

Ischemic insults on neurons trigger excessive, pathological glutamate release that causes Ca²âº overload resulting in neuronal cell death (excitotoxicity). The Ca²âº/calmodulin (CaM)-dependent protein kinase II (CaMKII) is a major mediator of physiological excitatory glutamate signals underlying neuronal plasticity and learning. Glutamate stimuli trigger autophosphorylation of CaMKII at T286, a process that makes the kinase "autonomous" (partially active independent from Ca²âº stimulation) and that is required for forms of synaptic plasticity. Recent studies suggested autonomous CaMKII activity also as potential drug target for post-insult neuroprotection, both after glutamate insults in neuronal cultures and after focal cerebral ischemia in vivo. However, CaMKII and other members of the CaM kinase family have been implicated in regulation of both neuronal death and survival. Here, we discuss past findings and possible mechanisms of CaM kinase functions in excitotoxicity and cerebral ischemia, with a focus on CaMKII and its regulation.


Asunto(s)
Isquemia Encefálica/enzimología , Encéfalo/enzimología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Secuencia de Aminoácidos , Animales , Encéfalo/citología , Encéfalo/efectos de los fármacos , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/química , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Ácido Glutámico/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Fármacos Neuroprotectores/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico
14.
Sci Adv ; 7(16)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33853773

RESUMEN

Higher brain functions are thought to require synaptic frequency decoding that can lead to long-term potentiation (LTP) or depression (LTD). We show that the LTP versus LTD decision is determined by complex cross-regulation of T286 and T305/306 autophosphorylation within the 12meric CaMKII holoenzyme, which enabled molecular computation of stimulus frequency, amplitude, and duration. Both LTP and LTD require T286 phosphorylation, but T305/306 phosphorylation selectively promoted LTD. In response to excitatory LTP versus LTD stimuli, the differential T305/306 phosphorylation directed CaMKII movement to either excitatory or inhibitory synapses, thereby coordinating plasticity at both synapse types. Fast T305/306 phosphorylation required prior T286 phosphorylation and then curbed CaMKII activity by two mechanisms: (i) a cis-subunit reaction reduced both Ca2+ stimulation and autonomous activity and (ii) a trans-subunit reaction enabled complete activity shutdown and feed-forward inhibition of further T286 phosphorylation. These are fundamental additions to the long-studied CaMKII regulation and function in neuronal plasticity.

15.
Cell Rep ; 37(13): 110168, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34965414

RESUMEN

Neuronal CaMKII holoenzymes (α and ß isoforms) enable molecular signal computation underlying learning and memory but also mediate excitotoxic neuronal death. Here, we provide a comparative analysis of these signaling devices, using single-particle electron microscopy (EM) in combination with biochemical and live-cell imaging studies. In the basal state, both isoforms assemble mainly as 12-mers (but also 14-mers and even 16-mers for the ß isoform). CaMKIIα and ß isoforms adopt an ensemble of extended activatable states (with average radius of 12.6 versus 16.8 nm, respectively), characterized by multiple transient intra- and inter-holoenzyme interactions associated with distinct functional properties. The extended state of CaMKIIß allows direct resolution of intra-holoenzyme kinase domain dimers. These dimers could enable cooperative activation by calmodulin, which is observed for both isoforms. High-order CaMKII clustering mediated by inter-holoenzyme kinase domain dimerization is reduced for the ß isoform for both basal and excitotoxicity-induced clusters, both in vitro and in neurons.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/química , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Hipocampo/enzimología , Neuronas/enzimología , Animales , Femenino , Holoenzimas , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación , Conformación Proteica , Imagen Individual de Molécula
16.
iScience ; 24(10): 103184, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34667946

RESUMEN

The Ca2+/Calmodulin-dependent protein kinase II (CaMKII) is a central regulator of synaptic plasticity and has been implicated in various neurological conditions, including schizophrenia. Here, we characterize six different CaMKIIα variants found in patients with schizophrenia. Only R396stop disrupted the 12-meric holoenzyme structure, GluN2B binding, and synaptic localization. Additionally, R396stop impaired T286 autophosphorylation that generates Ca2+-independent "autonomous" kinase activity. This impairment in T286 autophosphorylation was shared by the R8H mutation, the only mutation that additionally reduced stimulated kinase activity. None of the mutations affected the levels of CaMKII expression in HEK293 cells. Thus, impaired CaMKII function was detected only for R396stop and R8H. However, two of the other mutations have been later identified also in the general population, and not all mutations found in patients with schizophrenia would be expected to cause disease. Nonetheless, for the R396stop mutation, the severity of the biochemical effects found here would predict a neurological phenotype.

17.
iScience ; 24(10): 103214, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34704002

RESUMEN

Binding of two different CaM kinases, CaMKII and DAPK1, to the NMDA-type glutamate receptor (NMDAR) subunit GluN2B near S1303 has been implicated in excitotoxic/ischemic neuronal cell death. The GluN2BΔCaMKII mutation (L1298A, R1300Q) is neuroprotective but abolishes only CaMKII but not DAPK1 binding. However, both kinases can additionally phosphorylate GluN2B S1303. Thus, we here tested S1303 phosphorylation for possible contribution to neuronal cell death. The GluN2BΔCaMKII mutation completely abolished phosphorylation by CaMKII and DAPK1, suggesting that the mutation could mediate neuroprotection by disrupting phosphorylation. However, S1303 phosphorylation was not increased by excitotoxic insults in hippocampal slices or by global cerebral ischemia induced by cardiac arrest and cardiopulmonary resuscitation in vivo. In hippocampal cultures, S1303 phosphorylation was induced by chemical LTD but not LTP stimuli. These results indicate that the additional effect of the GluN2BΔCaMKII mutation on phosphorylation needs to be considered only in LTD but not in LTP or ischemia/excitotoxicity.

18.
Cell Rep ; 30(1): 1-8.e4, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31914378

RESUMEN

DAPK1 binding to GluN2B was prominently reported to mediate ischemic cell death in vivo. DAPK1 and CaMKII bind to the same GluN2B region, and their binding is mutually exclusive. Here, we show that mutating the binding region on GluN2B (L1298A/R1300Q) protected against neuronal cell death induced by cardiac arrest followed by resuscitation. Importantly, the GluN2B mutation selectively abolished only CaMKII, but not DAPK1, binding. During ischemic or excitotoxic insults, CaMKII further accumulated at excitatory synapses, and this accumulation was mediated by GluN2B binding. Interestingly, extra-synaptic GluN2B decreased after ischemia, but its relative association with DAPK1 increased. Thus, ischemic neuronal death requires CaMKII binding to synaptic GluN2B, whereas any potential role for DAPK1 binding is restricted to a different, likely extra-synaptic population of GluN2B.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Paro Cardíaco/metabolismo , Paro Cardíaco/patología , Isquemia/metabolismo , Isquemia/patología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Femenino , Ácido Glutámico/toxicidad , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Neurotoxinas/toxicidad , Unión Proteica/efectos de los fármacos , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Resucitación
19.
Nat Commun ; 9: 16180, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29799013

RESUMEN

This corrects the article DOI: 10.1038/ncomms15742.

20.
Cell Rep ; 23(11): 3137-3145, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29898386

RESUMEN

Alzheimer's disease (AD) is emerging as a synaptopathology driven by metaplasticity. Indeed, reminiscent of metaplasticity, oligomeric forms of the amyloid-ß peptide (oAß) prevent induction of long-term potentiation (LTP) via the prior activation of GluN2B-containing NMDA receptors (NMDARs). However, the downstream Ca2+-dependent signaling molecules that mediate aberrant metaplasticity are unknown. In this study, we show that oAß promotes the activation of Ca2+/calmodulin-dependent kinase II (CaMKII) via GluN2B-containing NMDARs. Importantly, we find that CaMKII inhibition rescues both the LTP impairment and the dendritic spine loss mediated by oAß. Mechanistically resembling metaplasticity, oAß prevents subsequent rounds of plasticity from inducing CaMKII T286 autophosphorylation, as well as the associated anchoring and accumulation of synaptic AMPA receptors (AMPARs). Finally, prolonged oAß treatment-induced CaMKII misactivation leads to dendritic spine loss via the destabilization of surface AMPARs. Thus, our study demonstrates that oAß engages synaptic metaplasticity via aberrant CaMKII activation.


Asunto(s)
Péptidos beta-Amiloides/química , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Fragmentos de Péptidos/química , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/farmacología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Células Cultivadas , Espinas Dendríticas/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Neuronas/citología , Neuronas/metabolismo , Fragmentos de Péptidos/farmacología , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores AMPA/química , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA