Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Respir Cell Mol Biol ; 63(1): 118-131, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32209028

RESUMEN

Pulmonary veno-occlusive disease (PVOD) occurs in humans either as a heritable form (hPVOD) due to biallelic inactivating mutations of EIF2AK4 (encoding GCN2) or as a sporadic form in older age (sPVOD). The chemotherapeutic agent mitomycin C (MMC) is a potent inducer of PVOD in humans and in rats (MMC-PVOD). Here, we compared human hPVOD and sPVOD, and MMC-PVOD pathophysiology at the histological, cellular, and molecular levels to unravel common altered pathomechanisms. MMC exposure in rats was associated primarily with arterial and microvessel remodeling, and secondarily by venous remodeling, when PVOD became symptomatic. In all forms of PVOD tested, there was convergent GCN2-dependent but eIF2α-independent pulmonary protein overexpression of HO-1 (heme oxygenase 1) and CHOP (CCAAT-enhancer-binding protein [C/EBP] homologous protein), two downstream effectors of GCN2 signaling and endoplasmic reticulum stress. In human PVOD samples, CHOP immunohistochemical staining mainly labeled endothelial cells in remodeled veins and arteries. Strong HO-1 staining was observed only within capillary hemangiomatosis foci, where intense microvascular proliferation occurs. HO-1 and CHOP stainings were not observed in control and pulmonary arterial hypertension lung tissues, supporting the specificity for CHOP and HO-1 involvement in PVOD pathobiology. In vivo loss of GCN2 (EIF2AK4 mutations carriers and Eif2ak4-/- rats) or in vitro GCN2 inhibition in cultured pulmonary artery endothelial cells using pharmacological and siRNA approaches demonstrated that GCN2 loss of function negatively regulates BMP (bone morphogenetic protein)-dependent SMAD1/5/9 signaling. Exogenous BMP9 was still able to reverse GCN2 inhibition-induced proliferation of pulmonary artery endothelial cells. In conclusion, we identified CHOP and HO-1 inhibition, and BMP9, as potential therapeutic options for PVOD.


Asunto(s)
Enfermedad Veno-Oclusiva Pulmonar/metabolismo , Enfermedad Veno-Oclusiva Pulmonar/patología , Animales , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Humanos , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Pulmón/metabolismo , Pulmón/patología , Mutación/genética , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Ratas , Transducción de Señal/fisiología , Factor de Transcripción CHOP/metabolismo
2.
Respir Res ; 21(1): 186, 2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32678044

RESUMEN

BACKGROUND: The pathogenesis of pulmonary arterial hypertension (PAH) involves many signalling pathways. MicroRNAs are potential candidates involved in simultaneously coordinating multiple genes under such multifactorial conditions. METHODS AND RESULTS: MiR-138-5p is overexpressed in pulmonary arterial smooth muscle cells (PASMCs) from PAH patients and in lungs from rats with monocrotaline-induced pulmonary hypertension (MCT-PH). MiR-138-5p is predicted to regulate the expression of the potassium channel KCNK3, whose loss is associated with the development and progression of PAH. We hypothesized that, in vivo, miR-138-5p inhibition would restore KCNK3 lung expression and subsequently alleviate PAH. Nebulization-based delivery of anti-miR-138-5p to rats with established MCT-PH significantly reduced the right ventricular systolic pressure and significantly improved the pulmonary arterial acceleration time (PAAT). These haemodynamic improvements were related to decrease pulmonary vascular remodelling, lung inflammation and pulmonary vascular cell proliferation in situ. In vivo inhibition of miR-138-5p restored KCNK3 mRNA expression and SLC45A3 protein expression in the lungs. CONCLUSIONS: We confirmed that in vivo inhibition of miR-138-5p reduces the development of PH in experimental MCT-PH. The possible curative mechanisms involve at least the normalization of lung KCNK3 as well as SLC45A3 expression.


Asunto(s)
Antagomirs/administración & dosificación , Presión Arterial , MicroARNs/antagonistas & inhibidores , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Hipertensión Arterial Pulmonar/prevención & control , Arteria Pulmonar/metabolismo , Administración por Inhalación , Animales , Antagomirs/genética , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Monocrotalina , Proteínas de Transporte de Monosacáridos/genética , Proteínas del Tejido Nervioso/genética , Canales de Potasio de Dominio Poro en Tándem/genética , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/fisiopatología , Arteria Pulmonar/fisiopatología , Ratas Wistar , Transducción de Señal , Remodelación Vascular
3.
Circulation ; 137(22): 2371-2389, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29444988

RESUMEN

BACKGROUND: Excessive proliferation and apoptosis resistance in pulmonary vascular cells underlie vascular remodeling in pulmonary arterial hypertension (PAH). Specific treatments for PAH exist, mostly targeting endothelial dysfunction, but high pulmonary arterial pressure still causes heart failure and death. Pulmonary vascular remodeling may be driven by metabolic reprogramming of vascular cells to increase glutaminolysis and glutamate production. The N-methyl-d-aspartate receptor (NMDAR), a major neuronal glutamate receptor, is also expressed on vascular cells, but its role in PAH is unknown. METHODS: We assessed the status of the glutamate-NMDAR axis in the pulmonary arteries of patients with PAH and controls through mass spectrometry imaging, Western blotting, and immunohistochemistry. We measured the glutamate release from cultured pulmonary vascular cells using enzymatic assays and analyzed NMDAR regulation/phosphorylation through Western blot experiments. The effect of NMDAR blockade on human pulmonary arterial smooth muscle cell proliferation was determined using a BrdU incorporation assay. We assessed the role of NMDARs in vascular remodeling associated to pulmonary hypertension, in both smooth muscle-specific NMDAR knockout mice exposed to chronic hypoxia and the monocrotaline rat model of pulmonary hypertension using NMDAR blockers. RESULTS: We report glutamate accumulation, upregulation of the NMDAR, and NMDAR engagement reflected by increases in GluN1-subunit phosphorylation in the pulmonary arteries of human patients with PAH. Kv channel inhibition and type A-selective endothelin receptor activation amplified calcium-dependent glutamate release from human pulmonary arterial smooth muscle cell, and type A-selective endothelin receptor and platelet-derived growth factor receptor activation led to NMDAR engagement, highlighting crosstalk between the glutamate-NMDAR axis and major PAH-associated pathways. The platelet-derived growth factor-BB-induced proliferation of human pulmonary arterial smooth muscle cells involved NMDAR activation and phosphorylated GluN1 subunit localization to cell-cell contacts, consistent with glutamatergic communication between proliferating human pulmonary arterial smooth muscle cells via NMDARs. Smooth-muscle NMDAR deficiency in mice attenuated the vascular remodeling triggered by chronic hypoxia, highlighting the role of vascular NMDARs in pulmonary hypertension. Pharmacological NMDAR blockade in the monocrotaline rat model of pulmonary hypertension had beneficial effects on cardiac and vascular remodeling, decreasing endothelial dysfunction, cell proliferation, and apoptosis resistance while disrupting the glutamate-NMDAR pathway in pulmonary arteries. CONCLUSIONS: These results reveal a dysregulation of the glutamate-NMDAR axis in the pulmonary arteries of patients with PAH and identify vascular NMDARs as targets for antiremodeling treatments in PAH.


Asunto(s)
Ácido Glutámico/metabolismo , Hipertensión Pulmonar/patología , Receptores de N-Metil-D-Aspartato/metabolismo , Remodelación Vascular , Animales , Apoptosis/efectos de los fármacos , Calcio/farmacología , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Maleato de Dizocilpina/farmacología , Endotelina-1/farmacología , Humanos , Hipertensión Pulmonar/metabolismo , Pulmón/metabolismo , Pulmón/patología , Ratones , Ratones Noqueados , Músculo Liso Vascular/citología , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Ratas , Receptores de Endotelina/química , Receptores de Endotelina/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/genética , Transducción de Señal/efectos de los fármacos , Remodelación Vascular/efectos de los fármacos
4.
Am J Physiol Lung Cell Mol Physiol ; 316(3): L445-L455, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30543306

RESUMEN

In this study, we explored the complex interactions between platelet-derived growth factor (PDGF) and N-methyl-d-aspartate receptor (NMDAR) and their effect on the excessive proliferation and migration of smooth muscle cells leading to obstructed arteries in pulmonary arterial hypertension (PAH). We report lower expression of glutamate receptor NMDA-type subunit 2B (GluN2B), a subunit composing NMDARs expected to affect cell survival/proliferation of pulmonary artery smooth muscle cells (PASMCs), in PAH patient lungs. PASMC exposure to PDGF-BB stimulated immediate increased levels of phosphorylated Src family kinases (SFKs) together with increased phosphorylated GluN2B (its active form) and cell surface relocalization, suggesting a cross talk between PDGFR-recruited SFKs and NMDAR. Selective inhibition of PDGFR-ß or SFKs with imatinib or A-419259, respectively, on one hand, or with specific small-interfering RNAs (siRNAs) on the other hand, aborted PDGF-induced phosphorylation of GluN2B, thus validating the pathway. Selective inhibition of GluN2B using Rö25-6981 and silencing with specific siRNA, in the presence of PDGF-BB, significantly increased both migration and proliferation of PASMCs, thus strengthening the functional importance of the pathway. Together, these results indicate that GluN2B-type NMDAR activation may confer to PASMCs antiproliferative and antimigratory properties. The decreased levels of GluN2B observed in PAH pulmonary arteries could mediate the excessive proliferation of PASMCs, thus contributing to medial hyperplasia and PAH development.


Asunto(s)
Miocitos del Músculo Liso/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Adulto , Anciano , Hipertensión Pulmonar Primaria Familiar/metabolismo , Humanos , Hipertensión Pulmonar/metabolismo , Persona de Mediana Edad , Músculo Liso Vascular/metabolismo , Arteria Pulmonar/metabolismo
5.
Am J Respir Crit Care Med ; 194(10): 1273-1285, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27149112

RESUMEN

RATIONALE: Pulmonary arterial hypertension (PAH) is characterized by excessive proliferation of pulmonary artery smooth muscle cells (PASMCs). This is sustained in time by the down-regulation of microRNA (miR)-204. In systemic vascular diseases, reduced miR-204 expression promotes vascular biomineralization by augmenting the expression of the transcription factor Runt-related transcription factor 2 (RUNX2). Implication of RUNX2 in PAH-related vascular remodeling and presence of calcified lesions in PAH remain unexplored. OBJECTIVES: We hypothesized that RUNX2 is up-regulated in lungs of patients with PAH, contributing to vascular remodeling and calcium-related biomineralization. METHODS: We harvested human lung tissues in which we assessed calcification lesions and RUNX2 expression. We also isolated PASMCs from these tissues for in vitro analyses. Using a bidirectional approach, we investigated the role for RUNX2 in cell proliferation, apoptosis, and calcification capacity. Ectopic delivery of small interfering RNA against RUNX2 was used in an animal model of PAH to evaluate the therapeutic potential of RUNX2 inhibition in this disease. MEASUREMENTS AND MAIN RESULTS: Patients with PAH display features of calcified lesions within the distal pulmonary arteries (PAs). We show that RUNX2 is up-regulated in lungs, distal PAs, and primary cultured human PASMCs isolated from PAH and compared with patients without PAH. RUNX2 expression histologically correlates with vascular remodeling and calcification. Using in vitro gain- and loss-of-function approaches, we mechanistically demonstrate that miR-204 diminution promotes RUNX2 up-regulation and that sustained RUNX2 expression activates hypoxia-inducible factor-1α, leading to aberrant proliferation, resistance to apoptosis, and subsequent transdifferentiation of PAH-PASMCs into osteoblast-like cells. In the PAH Sugen/hypoxia rat model, molecular RUNX2 inhibition reduces PA remodeling and prevents calcification, thus improving pulmonary hemodynamic parameters and right ventricular function. CONCLUSIONS: RUNX2 plays a pivotal role in the pathogenesis of PAH, contributing to the development of proliferative and calcified PA lesions. Inhibition of RUNX2 may therefore represent an attractive therapeutic strategy for PAH.


Asunto(s)
Proliferación Celular/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/fisiopatología , Calcificación Vascular/genética , Calcificación Vascular/fisiopatología , Adulto , Proliferación Celular/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad
6.
Curr Opin Oncol ; 28(1): 72-82, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26569423

RESUMEN

PURPOSE OF REVIEW: Pulmonary arterial hypertension (PAH) is a rare disease with poor prognosis and no therapeutics. PAH is characterized by severe remodeling of precapillary pulmonary arteries, leading to increased vascular resistance, pulmonary hypertension compensatory right ventricular hypertrophy, then heart failure and death. PAH pathogenesis shares similarities with carcinogenesis such as excessive cell proliferation, apoptosis resistance, metabolic shifts, or phenotypic transition. Although PAH is not a cancer, comparison of analogous mechanisms between PAH and cancer led to the concept of a cancer-like disease to emerge. MicroRNAs (miRNAs) are small noncoding RNAs involved in the regulation of posttranscriptional gene expression. miRNA dysregulations have been reported as promoter of the development of various diseases including cancers. RECENT FINDINGS: Recent studies revealed that miRNA dysregulations also occur in PAH pathogenesis. In PAH, different miRNAs have been implicated to be the main features of PAH pathophysiology (in pulmonary inflammation, vascular remodeling, angiogenesis, and right heart hypertrophy). SUMMARY: The review summarizes the implication of miRNA dysregulation in PAH development and discusses the similarities and differences with those observed in cancers.


Asunto(s)
Hipertensión Pulmonar/genética , MicroARNs/genética , Neoplasias/genética , Redes Reguladoras de Genes , Humanos , Hipertensión Pulmonar/fisiopatología , MicroARNs/metabolismo
7.
Circulation ; 129(7): 786-97, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24270264

RESUMEN

BACKGROUND: Pulmonary arterial hypertension (PAH) is associated with sustained inflammation known to promote DNA damage. Despite these unfavorable environmental conditions, PAH pulmonary arterial smooth muscle cells (PASMCs) exhibit, in contrast to healthy PASMCs, a pro-proliferative and anti-apoptotic phenotype, sustained in time by the activation of miR-204, nuclear factor of activated T cells, and hypoxia-inducible factor 1-α. We hypothesized that PAH-PASMCs have increased the activation of poly(ADP-ribose) polymerase-1 (PARP-1), a critical enzyme implicated in DNA repair, allowing proliferation despite the presence of DNA-damaging insults, eventually leading to PAH. METHODS AND RESULTS: Human PAH distal pulmonary arteries and cultured PAH-PASMCs exhibit increased DNA damage markers (53BP1 and γ-H2AX) and an overexpression of PARP-1 (immunoblot and activity assay), in comparison with healthy tissues/cells. Healthy PASMCs treated with a clinically relevant dose of tumor necrosis factor-α harbored a similar phenotype, suggesting that inflammation induces DNA damage and PARP-1 activation in PAH. We also showed that PARP-1 activation accounts for miR-204 downregulation (quantitative reverse transcription polymerase chain reaction) and the subsequent activation of the transcription factors nuclear factor of activated T cells and hypoxia-inducible factor 1-α in PAH-PASMCs, previously shown to be critical for PAH in several models. These effects resulted in PASMC proliferation (Ki67, proliferating cell nuclear antigen, and WST1 assays) and resistance to apoptosis (terminal deoxynucleotidyl transferase dUTP nick end labeling and Annexin V assays). In vivo, the clinically available PARP inhibitor ABT-888 reversed PAH in 2 experimental rat models (Sugen/hypoxia and monocrotaline). CONCLUSIONS: These results show for the first time that the DNA damage/PARP-1 signaling pathway is important for PAH development and provide a new therapeutic target for this deadly disease with high translational potential.


Asunto(s)
Daño del ADN/fisiología , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Transducción de Señal/fisiología , Adulto , Anciano , Animales , Apoptosis/fisiología , Bencimidazoles/farmacología , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Hipertensión Pulmonar Primaria Familiar , Femenino , Humanos , Hipertensión Pulmonar/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Monocrotalina/farmacología , Factores de Transcripción NFATC/metabolismo , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/metabolismo , Ratas , Ratas Sprague-Dawley
8.
Eur Respir J ; 43(2): 531-44, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23845719

RESUMEN

Pulmonary artery smooth muscle cells (PASMC), in pulmonary arterial hypertension (PAH), contribute to obliterative vascular remodelling and are characterised by enhanced proliferation, suppressed apoptosis and, a much less studied, increased migration potential. One of the major proteins that regulate cell migration is focal adhesion kinase (FAK), but its role in PAH is not fully understood. We hypothesised that targeting cell migration by FAK inhibition may be a new therapeutic strategy in PAH. In vivo, inhalation of FAK-siRNA (n=5) or oral delivery of PF-228 (FAK inhibitor PF-573 228; n=5) inhibited rat monocrotaline induced PAH, improving the haemodynamics, vascular remodelling (media thickness), and right ventricular hypertrophy. In vitro, FAK was activated in PAH human lungs (n=8) or PASMC when compared to those form healthy subjects (Western blot, n=5), in a Src-dependent manner, as it was reversed by the specific Src inhibitor PP2. The degree of FAK phosphorylation at Y576 correlated positively with pulmonary vascular resistance in PAH patients. FAK inhibition (siRNA, PF-228 and PP2) in PAH-PASMCs induced a fivefold increase in apoptosis (percentage of terminal deoxynucleotidyl transferase dUTP nick end labelling), a 2.5-fold decrease in proliferation (%Ki67), an 18% decrease in cell migration (colorimetric assay) and a 50% decrease in cell invasion (wound healing). Suppressing PASMC migration by FAK inhibition inhibits PAH progression and may open a new therapeutic window in PAH.


Asunto(s)
Movimiento Celular , Regulación de la Expresión Génica , Hipertensión Pulmonar/fisiopatología , Adolescente , Adulto , Animales , Apoptosis , Hipertensión Pulmonar Primaria Familiar , Femenino , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Pulmón/patología , Masculino , Persona de Mediana Edad , Fosforilación , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Adulto Joven
9.
Cell Mol Life Sci ; 69(17): 2805-31, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22446747

RESUMEN

The pathobiology of pulmonary arterial hypertension (PAH) involves a remodeling process in distal pulmonary arteries, as well as vasoconstriction and in situ thrombosis, leading to an increase in pulmonary vascular resistance, right heart failure and death. Its etiology may be idiopathic, but PAH is also frequently associated with underlying conditions such as connective tissue diseases. During the past decade, more than welcome novel therapies have been developed and are in development, including those increasingly targeting the remodeling process. These therapeutic options modestly increase the patients' long-term survival, now approaching 60% at 5 years. However, non-invasive tools for confirming PAH diagnosis, and assessing disease severity and response to therapy, are tragically lacking and would help to select the best treatment. After exclusion of other causes of pulmonary hypertension, a final diagnosis still relies on right heart catheterization, an invasive technique which cannot be repeated as often as an optimal follow-up might require. Similarly, other techniques and biomarkers used for assessing disease severity and response to treatment generally lack specificity and have significant limitations. In this review, imaging as well as current and future circulating biomarkers for diagnosis, prognosis, and follow-up are discussed.


Asunto(s)
Biomarcadores/sangre , Diagnóstico por Imagen , Hipertensión Pulmonar/sangre , Hipertensión Pulmonar/diagnóstico , Hipertensión Pulmonar Primaria Familiar , Humanos
10.
Circulation ; 123(11): 1205-15, 2011 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-21382889

RESUMEN

BACKGROUND: Pulmonary artery hypertension (PAH) is a proliferative disorder associated with enhanced pulmonary artery smooth muscle cell proliferation and suppressed apoptosis. The sustainability of this phenotype required the activation of a prosurvival transcription factor like signal transducers and activators of transcription-3 (STAT3) and nuclear factor of activated T cell (NFAT). Because these factors are implicated in several physiological processes, their inhibition in PAH patients could be associated with detrimental effects. Therefore, a better understanding of the mechanism accounting for their expression/activation in PAH pulmonary artery smooth muscle cells is of great therapeutic interest. METHODS AND RESULTS: Using multidisciplinary and translational approaches, we demonstrated that STAT3 activation in both human and experimental models of PAH accounts for the expression of both NFATc2 and the oncoprotein kinase Pim1, which trigger NFATc2 activation. Because Pim1 expression correlates with the severity of PAH in humans and is confined to the PAH pulmonary artery smooth muscle cell, Pim1 was identified as an attractive therapeutic target for PAH. Indeed, specific Pim1 inhibition in vitro decreases pulmonary artery smooth muscle cell proliferation and promotes apoptosis, all of which are sustained by NFATc2 inhibition. In vivo, tissue-specific inhibition of Pim1 by nebulized siRNA reverses monocrotaline-induced PAH in rats, whereas Pim1 knockout mice are resistant to PAH development. CONCLUSION: We demonstrated for the first time that inhibition of the inappropriate activation of STAT3/Pim1 axis is a novel, specific, and attractive therapeutic strategy to reverse PAH.


Asunto(s)
Hipertensión Pulmonar/etiología , Proteínas Proto-Oncogénicas c-pim-1/fisiología , Factor de Transcripción STAT3/fisiología , Animales , Apoptosis , Proliferación Celular , Células Cultivadas , Humanos , Mitocondrias/fisiología , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Factores de Transcripción NFATC/fisiología , Arteria Pulmonar/metabolismo , Ratas
11.
Eur Respir J ; 40(3): 618-29, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22496325

RESUMEN

Like cancer, pulmonary arterial hypertension (PAH) is characterised by a pro-proliferative and anti-apoptotic phenotype. In PAH, pulmonary artery smooth muscle cell (PASMC) proliferation is enhanced and apoptosis suppressed. The sustainability of this phenotype requires the activation of pro-survival transcription factors, such as signal transducer and activator of transcription (STAT)3 and nuclear factor of activated T-cells (NFAT). There are no drugs currently available that are able to efficiently and safely inhibit this axis. We hypothesised that plumbagin (PLB), a natural organic compound known to block STAT3 in cancer cells, would reverse experimental pulmonary hypertension. Using human PAH-PASMC, we demonstrated in vitro that PLB inhibits the activation of the STAT3/NFAT axis, increasing the voltage-gated K(+) current bone morphogenetic protein receptor type II (BMPR2), and decreasing intracellular Ca(2+) concentration ([Ca(2+)](i)), rho-associated coiled-coil containing protein kinase (ROCK)1 and interleukin (IL)-6, contributing to the inhibition of PAH-PASMC proliferation and resistance to apoptosis (proliferating cell nuclear antigen (PCNA), TUNEL, Ki67 and anexine V). In vivo, PLB oral administration decreases distal pulmonary artery remodelling, mean pulmonary artery pressure and right ventricular hypertrophy without affecting systemic circulation in both monocrotaline- and suden/chronic hypoxia-induced PAH in rats. This study demonstrates that the STAT3/NFAT axis can be therapeutically targeted by PLB in human PAH-PASMC and experimental PAH rat models. Thus, PLB could be considered a specific and attractive future therapeutic strategy for PAH.


Asunto(s)
Apoptosis/efectos de los fármacos , Cardiotónicos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Hipertensión Pulmonar/tratamiento farmacológico , Naftoquinonas/uso terapéutico , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/biosíntesis , Calcio/metabolismo , Células Cultivadas , Hipertensión Pulmonar Primaria Familiar , Humanos , Etiquetado Corte-Fin in Situ , Interleucina-6/metabolismo , Masculino , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Factores de Transcripción NFATC/biosíntesis , Canales de Potasio con Entrada de Voltaje/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ratas , Quinasas Asociadas a rho/metabolismo
12.
Arterioscler Thromb Vasc Biol ; 31(9): 2114-24, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21680901

RESUMEN

OBJECTIVE: Vascular remodeling diseases (VRD) are mainly characterized by inflammation and a vascular smooth muscle cells (VSMCs) proproliferative and anti-apoptotic phenotype. Recently, the activation of the advanced glycation endproducts receptor (RAGE) has been shown to promote VSMC proliferation and resistance to apoptosis in VRD in a signal transducer and activator of transcription (STAT)3-dependant manner. Interestingly, we previously described in both cancer and VRD that the sustainability of this proproliferative and antiapoptotic phenotype requires activation of the transcription factor NFAT (nuclear factor of activated T-cells). In cancer, NFAT activation is dependent of the oncoprotein provirus integration site for Moloney murine leukemia virus (Pim1), which is regulated by STAT3 and activated in VRD. Therefore, we hypothesized that RAGE/STAT3 activation in VSMC activates Pim1, promoting NFAT and thus VSMC proliferation and resistance to apoptosis. Methods/Results- In vitro, freshly isolated human carotid VSMCs exposed to RAGE activator Nε-(carboxymethyl)lysine (CML) for 48 hours had (1) activated STAT3 (increased P-STAT3/STAT3 ratio and P-STAT3 nuclear translocation); (2) increased STAT3-dependent Pim1 expression resulting in NFATc1 activation; and (3) increased Pim1/NFAT-dependent VSMC proliferation (PCNA, Ki67) and resistance to mitochondrial-dependent apoptosis (TMRM, Annexin V, TUNEL). Similarly to RAGE inhibition (small interfering RNA [siRNA]), Pim1, STAT3 and NFATc1 inhibition (siRNA) reversed these abnormalities in human carotid VSMC. Moreover, carotid artery VSMCs isolated from Pim1 knockout mice were resistant to CML-induced VSMC proliferation and resistance to apoptosis. In vivo, RAGE inhibition decreases STAT3/Pim1/NFAT activation, reversing vascular remodeling in the rat carotid artery-injured model. CONCLUSIONS: RAGE activation accounts for many features of VRD including VSMC proliferation and resistance to apoptosis by the activation of STAT3/Pim1/NFAT axis. Molecules aimed to inhibit RAGE could be of a great therapeutic interest for the treatment of VRD.


Asunto(s)
Músculo Liso Vascular/patología , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Receptores Inmunológicos/fisiología , Animales , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Lisina/análogos & derivados , Lisina/sangre , Lisina/farmacología , Ratones , Factores de Transcripción NFATC/fisiología , Ratas , Receptor para Productos Finales de Glicación Avanzada , Factor de Transcripción STAT3/metabolismo
13.
Am J Physiol Heart Circ Physiol ; 301(5): H1798-809, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21890685

RESUMEN

Pulmonary arterial hypertension (PAH) is an obstructive vasculopathy characterized by enhanced pulmonary artery smooth muscle cell (PASMC) proliferation and suppressed apoptosis. This phenotype is sustained by the activation of the Src/signal transducer and activator of transcription 3 (STAT3) axis, maintained by a positive feedback loop involving miR-204 and followed by an aberrant expression/activation of its downstream targets such as Pim1 and nuclear factor of activated T-cells (NFATc2). Dehydroepiandrosterone (DHEA) is a steroid hormone shown to reverse vascular remodeling in systemic vessels. Since STAT3 has been described as modulated by DHEA, we hypothesized that DHEA reverses human pulmonary hypertension by inhibiting Src/STAT3 constitutive activation. Using PASMCs isolated from patients with PAH (n = 3), we demonstrated that DHEA decreases both Src and STAT3 activation (Western blot and nuclear translocation assay), resulting in a significant reduction of Pim1, NFATc2 expression/activation (quantitative RT-PCR and Western blot), as well as Survivin and upregulation of bone morphogenetic protein receptor 2 (BMPR2) and miR-204. Src/STAT3 axis inhibition by DHEA is associated with 1) mitochondrial membrane potential (tetramethylrhodamine methyl-ester perchlorate; n = 150; P < 0.05) depolarization increasing apoptosis by 25% (terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling; n = 150; P < 0.05); and 2) decreased intracellular Ca(2+) concentration (fluo-3 AM; n = 150; P < 0.05) and proliferation by 30% (PCNA). Finally, in vivo similarly to STAT3 inhibition DHEA improves experimental PAH (monocrotaline rats) by decreasing mean PA pressure and right ventricle hypertrophy. These effects were associated with the inhibition of Src, STAT3, Pim1, NFATc2, and Survivin and the upregulation of BMPR2 and miR-204. We demonstrated that DHEA reverses pulmonary hypertension in part by inhibiting the Src/STAT3.


Asunto(s)
Antihipertensivos/farmacología , Deshidroepiandrosterona/farmacología , Hipertensión Pulmonar/tratamiento farmacológico , Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Vasodilatadores/farmacología , Familia-src Quinasas/metabolismo , Adulto , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Calcio/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Activación Enzimática , Hipertensión Pulmonar Primaria Familiar , Femenino , Humanos , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/enzimología , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/fisiopatología , Etiquetado Corte-Fin in Situ , Proteínas Inhibidoras de la Apoptosis/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , MicroARNs/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Persona de Mediana Edad , Monocrotalina , Músculo Liso/enzimología , Músculo Liso/patología , Músculo Liso/fisiopatología , Miocitos del Músculo Liso/enzimología , Factores de Transcripción NFATC/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/enzimología , Arteria Pulmonar/patología , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Survivin
14.
Respir Res ; 12: 128, 2011 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-21951574

RESUMEN

BACKGROUND: Pulmonary arterial hypertension (PAH) is a vascular remodeling disease characterized by enhanced proliferation of pulmonary artery smooth muscle cell (PASMC) and suppressed apoptosis. This phenotype has been associated with the upregulation of the oncoprotein survivin promoting mitochondrial membrane potential hyperpolarization (decreasing apoptosis) and the upregulation of growth factor and cytokines like PDGF, IL-6 and vasoactive agent like endothelin-1 (ET-1) promoting PASMC proliferation. Krüppel-like factor 5 (KLF5), is a zinc-finger-type transcription factor implicated in the regulation of cell differentiation, proliferation, migration and apoptosis. Recent studies have demonstrated the implication of KLF5 in tissue remodeling in cardiovascular diseases, such as atherosclerosis, restenosis, and cardiac hypertrophy. Nonetheless, the implication of KLF5 in pulmonary arterial hypertension (PAH) remains unknown. We hypothesized that KLF5 up-regulation in PAH triggers PASMC proliferation and resistance to apoptosis. METHODS AND RESULTS: We showed that KFL5 is upregulated in both human lung biopsies and cultured human PASMC isolated from distal pulmonary arteries from PAH patients compared to controls. Using stimulation experiments, we demonstrated that PDGF, ET-1 and IL-6 trigger KLF-5 activation in control PASMC to a level similar to the one seen in PAH-PASMC. Inhibition of the STAT3 pathway abrogates KLF5 activation in PAH-PASMC. Once activated, KLF5 promotes cyclin B1 upregulation and promotes PASMC proliferation and triggers survivin expression hyperpolarizing mitochondria membrane potential decreasing PASMC ability to undergo apoptosis. CONCLUSION: We demonstrated for the first time that KLF5 is activated in human PAH and implicated in the pro-proliferative and anti-apoptotic phenotype that characterize PAH-PASMC. We believe that our findings will open new avenues of investigation on the role of KLF5 in PAH and might lead to the identification of new therapeutic targets.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/fisiología , Proliferación Celular , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Factores de Transcripción de Tipo Kruppel/fisiología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Adolescente , Adulto , Animales , Células Cultivadas , Hipertensión Pulmonar Primaria Familiar , Femenino , Humanos , Inmunofenotipificación , Factores de Transcripción de Tipo Kruppel/biosíntesis , Masculino , Persona de Mediana Edad , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba/fisiología , Adulto Joven
15.
J Vis Exp ; (99): e52571, 2015 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-25993379

RESUMEN

Pulmonary arterial hypertension (PAH) is a disease affecting distal pulmonary arteries (PA). These arteries are deformed, leading to right ventricular failure. Current treatments are limited. Physiologically, pulsatile blood flow is detrimental to the vasculature. In response to sustained pulsatile stress, vessels release nitric oxide (NO) to induce vasodilation for self-protection. Based on this observation, this study developed a protocol to assess whether an artificial pulmonary pulsatile blood flow could induce an NO-dependent decrease in pulmonary artery pressure. One group of piglets was exposed to chronic hypoxia for 3 weeks and compared to a control group of piglets. Once a week, the piglets underwent echocardiography to assess PAH severity. At the end of hypoxia exposure, the piglets were subjected to a pulsatile protocol using a pulsatile catheter. After being anesthetized and prepared for surgery, the jugular vein of the piglet was isolated and the catheter was introduced through the right atrium, the right ventricle and the pulmonary artery, under radioscopic control. Pulmonary artery pressure (PAP) was measured before (T0), immediately after (T1) and 30 min after (T2) the pulsatile protocol. It was demonstrated that this pulsatile protocol is a safe and efficient method of inducing a significant reduction in mean PAP via an NO-dependent mechanism. These data open up new avenues for the clinical management of PAH.


Asunto(s)
Cateterismo Cardíaco/métodos , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/terapia , Hipoxia/fisiopatología , Hipoxia/terapia , Arteria Pulmonar/fisiopatología , Animales , Cateterismo Cardíaco/instrumentación , Modelos Animales de Enfermedad , Hemodinámica , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Hipoxia/metabolismo , Hipoxia/patología , Pulmón/irrigación sanguínea , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Flujo Pulsátil , Porcinos , Vasodilatación
16.
J Mol Med (Berl) ; 89(11): 1089-101, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21761156

RESUMEN

Pulmonary arterial hypertension (PAH) is a disease of the pulmonary vasculature characterized by constricted and remodeled pulmonary arteries. This phenomenon is associated with enhanced pulmonary artery smooth muscle cells proliferation and suppressed apoptosis, metabolism shift, inflammation, and several other features that are considered as hallmarks of cancer. Since oncogenes, tumor suppressors, and miRNAs are the major regulators of signaling in the cancer phenotype, we studied if the same type of regulation is operative in PAH. From the discovery of BMPR2 mutation in familial forms of PAH, oncogenic pathways activation like MAPK were identified. Recently, the Src/STAT3/Pim1 axis was also described as playing a critical role in PAH pathogenesis. Moreover, through the down-regulation of miR-204, STAT3 enhances a positive feedback loop sustaining its own activation, showing that miRNA regulation is critical in PAH. Taken together, targeting oncoproteins or miRNAs appear as new therapeutic strategies for PAH. Several oncoprotein inhibitors are already in trials for cancer and could be soon available for PAH. Concerning miRNAs, the youth of this area makes therapies less achievable soon but not less interesting.


Asunto(s)
Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/terapia , MicroARNs/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Apoptosis/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Proliferación Celular , Regulación hacia Abajo/genética , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Enfermedades Genéticas Congénitas/patología , Enfermedades Genéticas Congénitas/terapia , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Sistema de Señalización de MAP Quinasas/genética , MicroARNs/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Mutación , Miocitos del Músculo Liso/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Proto-Oncogénicas c-pim-1/genética , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Proteínas Supresoras de Tumor/genética , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
17.
J Exp Med ; 208(3): 535-48, 2011 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-21321078

RESUMEN

Pulmonary arterial hypertension (PAH) is characterized by enhanced proliferation and reduced apoptosis of pulmonary artery smooth muscle cells (PASMCs). Because microRNAs have been recently implicated in the regulation of cell proliferation and apoptosis, we hypothesized that these regulatory molecules might be implicated in the etiology of PAH. In this study, we show that miR-204 expression in PASMCs is down-regulated in both human and rodent PAH. miR-204 down-regulation correlates with PAH severity and accounts for the proliferative and antiapoptotic phenotypes of PAH-PASMCs. STAT3 activation suppresses miR-204 expression, and miR-204 directly targets SHP2 expression, thereby SHP2 up-regulation, by miR-204 down-regulation, activates the Src kinase and nuclear factor of activated T cells (NFAT). STAT3 also directly induces NFATc2 expression. NFAT and SHP2 were needed to sustain PAH-PASMC proliferation and resistance to apoptosis. Finally, delivery of synthetic miR-204 to the lungs of animals with PAH significantly reduced disease severity. This study uncovers a new regulatory pathway involving miR-204 that is critical to the etiology of PAH and indicates that reestablishing miR-204 expression should be explored as a potential new therapy for this disease.


Asunto(s)
MicroARNs/fisiología , Animales , Apoptosis/genética , Apoptosis/fisiología , Proliferación Celular , Hipertensión Pulmonar Primaria Familiar , Regulación de la Expresión Génica , Marcadores Genéticos/genética , Marcadores Genéticos/fisiología , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/fisiopatología , Masculino , Ratones , MicroARNs/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatología , Análisis de Secuencia por Matrices de Oligonucleótidos , Arteria Pulmonar/metabolismo , Arteria Pulmonar/fisiopatología , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción STAT3/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Familia-src Quinasas/metabolismo , Familia-src Quinasas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA