Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Plant J ; 117(2): 332-341, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37985241

RESUMEN

Leaf plastids harbor a plethora of biochemical reactions including photosynthesis, one of the most important metabolic pathways on Earth. Scientists are eager to unveil the physiological processes within the organelle but also their interconnection with the rest of the plant cell. An increasingly important feature of this venture is to use experimental data in the design of metabolic models. A remaining obstacle has been the limited in situ volume information of plastids and other cell organelles. To fill this gap for chloroplasts, we established three microscopy protocols delivering in situ volumes based on: (i) chlorophyll fluorescence emerging from the thylakoid membrane, (ii) a CFP marker embedded in the envelope, and (iii) calculations from serial block-face scanning electron microscopy (SBFSEM). The obtained data were corroborated by comparing wild-type data with two mutant lines affected in the plastid division machinery known to produce small and large mesophyll chloroplasts, respectively. Furthermore, we also determined the volume of the much smaller guard cell plastids. Interestingly, their volume is not governed by the same components of the division machinery which defines mesophyll plastid size. Based on our three approaches, the average volume of a mature Col-0 wild-type mesophyll chloroplasts is 93 µm3 . Wild-type guard cell plastids are approximately 18 µm3 . Lastly, our comparative analysis shows that the chlorophyll fluorescence analysis can accurately determine chloroplast volumes, providing an important tool to research groups without access to transgenic marker lines expressing genetically encoded fluorescence proteins or costly SBFSEM equipment.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Microscopía Electrónica de Rastreo , Plastidios/metabolismo , Cloroplastos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hojas de la Planta/metabolismo , Clorofila/metabolismo , Microscopía Confocal
2.
Plant Physiol ; 194(1): 190-208, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37503807

RESUMEN

Cell wall properties play a major role in determining photosynthetic carbon uptake and water use through their impact on mesophyll conductance (CO2 diffusion from substomatal cavities into photosynthetic mesophyll cells) and leaf hydraulic conductance (water movement from xylem, through leaf tissue, to stomata). Consequently, modification of cell wall (CW) properties might help improve photosynthesis and crop water use efficiency (WUE). We tested this using 2 independent transgenic rice (Oryza sativa) lines overexpressing the rice OsAT10 gene (encoding a "BAHD" CoA acyltransferase), which alters CW hydroxycinnamic acid content (more para-coumaric acid and less ferulic acid). Plants were grown under high and low water levels, and traits related to leaf anatomy, CW composition, gas exchange, hydraulics, plant biomass, and canopy-level water use were measured. Alteration of hydroxycinnamic acid content led to statistically significant decreases in mesophyll CW thickness (-14%) and increased mesophyll conductance (+120%) and photosynthesis (+22%). However, concomitant increases in stomatal conductance negated the increased photosynthesis, resulting in no change in intrinsic WUE (ratio of photosynthesis to stomatal conductance). Leaf hydraulic conductance was also unchanged; however, transgenic plants showed small but statistically significant increases in aboveground biomass (AGB) (+12.5%) and canopy-level WUE (+8.8%; ratio of AGB to water used) and performed better under low water levels than wild-type plants. Our results demonstrate that changes in CW composition, specifically hydroxycinnamic acid content, can increase mesophyll conductance and photosynthesis in C3 cereal crops such as rice. However, attempts to improve photosynthetic WUE will need to enhance mesophyll conductance and photosynthesis while maintaining or decreasing stomatal conductance.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Dióxido de Carbono/metabolismo , Ácidos Cumáricos/metabolismo , Agua/metabolismo , Hojas de la Planta/metabolismo , Células del Mesófilo/metabolismo , Fotosíntesis , Productos Agrícolas/metabolismo , Pared Celular/metabolismo , Estomas de Plantas/metabolismo
3.
Plant Physiol ; 190(2): 1117-1133, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35876823

RESUMEN

In C4 plants, the pyruvate (Pyr), phosphate dikinase regulatory protein (PDRP) regulates the activity of the C4 pathway enzyme Pyr, phosphate dikinase (PPDK) in a light-/dark-dependent manner. The importance of this regulatory action to C4 pathway function and overall C4 photosynthesis is unknown. To resolve this question, we assessed in vivo PPDK phospho-regulation and whole leaf photophysiology in a CRISPR-Cas9 PDRP knockout (KO) mutant of the NADP-ME C4 grass green millet (Setaria viridis). PDRP enzyme activity was undetectable in leaf extracts from PDRP KO lines. Likewise, PPDK phosphorylated at the PDRP-regulatory Thr residue was immunologically undetectable in leaf extracts. PPDK enzyme activity in rapid leaf extracts was constitutively high in the PDRP KO lines, irrespective of light or dark pretreatment of leaves. Gas exchange analysis of net CO2 assimilation revealed PDRP KO leaves had markedly slower light induction kinetics when leaves transition from dark to high-light or low-light to high-light. In the initial 30 min of the light induction phase, KO leaves had an ∼15% lower net CO2 assimilation rate versus the wild-type (WT). Despite the impaired slower induction kinetics, we found growth and vigor of the KO lines to be visibly indistinguishable from the WT when grown in normal air and under standard growth chamber conditions. However, the PDRP KO plants grown under a fluctuating light regime exhibited a gradual multi-day decline in Fv/Fm, indicative of progressive photosystem II damage due to the absence of PDRP. Collectively, our results demonstrate that one of PDRP's functions in C4 photosynthesis is to ensure optimal photosynthetic light induction kinetics during dynamic changes in incident light.


Asunto(s)
Piruvato Ortofosfato Diquinasa , Setaria (Planta) , Dióxido de Carbono/metabolismo , NADP/metabolismo , Fosfatos/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Extractos Vegetales/metabolismo , Plantas/metabolismo , Piruvato Ortofosfato Diquinasa/química , Ácido Pirúvico/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Factores de Transcripción/metabolismo , Zea mays/metabolismo
4.
Plant Cell Environ ; 46(9): 2694-2710, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37219338

RESUMEN

Measurements of oxygen isotope enrichment of leaf water above source water (Δ18 OLW ) can improve our understanding of the interaction between leaf anatomy and physiology on leaf water transport. Models have been developed to predict Δ18 OLW such as the string-of-lakes model, which describes the mixing of leaf water pools, and the Péclet effect model, which incorporates transpiration rate and the mixing length between unenriched xylem and enriched mesophyll water in the mesophyll (Lm ) or veins (Lv ). Here we compare measurements and models of Δ18 OLW on two cell wall composition mutants grown under two light intensities and relative humidities to evaluate cell wall properties on leaf water transport. In maize (Zea mays), the compromised ultrastructure of the suberin lamellae in the bundle sheath of the ALIPHATIC SUBERIN FERULOYL TRANSFERASE mutant (Zmasft) reduced barriers to apoplastic water movement, resulting in higher E and, potentially, Lv and, consequently, lower Δ18 OLW . The difference in Δ18 OLW in cellulose synthase-like F6 (CslF6) mutants and wild-type of rice (Oryza sativa) grown under two light intensities co-varied with stomatal density. These results show that cell wall composition and stomatal density influence Δ18 OLW and that stable isotopes can facilitate the development of a physiologically and anatomically explicit water transport model.


Asunto(s)
Oryza , Agua , Isótopos de Oxígeno/análisis , Agua/análisis , Hojas de la Planta/fisiología , Zea mays , Luz , Oxígeno
5.
Ann Bot ; 132(3): 413-428, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37675505

RESUMEN

BACKGROUND AND AIMS: Phosphoenolpyruvate (PEP) carboxylase (PEPC) catalyses the irreversible carboxylation of PEP with bicarbonate to produce oxaloacetate. This reaction powers the carbon-concentrating mechanism (CCM) in plants that perform C4 photosynthesis. This CCM is generally driven by a single PEPC gene product that is highly expressed in the cytosol of mesophyll cells. We found two C4 grasses, Panicum miliaceum and Echinochloa colona, that each have two highly expressed PEPC genes. We characterized the kinetic properties of the two most abundant PEPCs in E. colona and P. miliaceum to better understand how the enzyme's amino acid structure influences its function. METHODS: Coding sequences of the two most abundant PEPC proteins in E. colona and P. miliaceum were synthesized by GenScript and were inserted into bacteria expression plasmids. Point mutations resulting in substitutions at conserved amino acid residues (e.g. N-terminal serine and residue 890) were created via site-directed PCR mutagenesis. The kinetic properties of semi-purified plant PEPCs from Escherichia coli were analysed using membrane-inlet mass spectrometry and a spectrophotometric enzyme-coupled reaction. KEY RESULTS: The two most abundant P. miliaceum PEPCs (PmPPC1 and PmPPC2) have similar sequence identities (>95 %), and as a result had similar kinetic properties. The two most abundant E. colona PEPCs (EcPPC1 and EcPPC2) had identities of ~78 % and had significantly different kinetic properties. The PmPPCs and EcPPCs had different responses to allosteric inhibitors and activators, and substitutions at the conserved N-terminal serine and residue 890 resulted in significantly altered responses to allosteric regulators. CONCLUSIONS: The two, significantly expressed C4Ppc genes in P. miliaceum were probably the result of genomes combining from two closely related C4Panicum species. We found natural variation in PEPC's sensitivity to allosteric inhibition that seems to bypass the conserved 890 residue, suggesting alternative evolutionary pathways for increased malate tolerance and other kinetic properties.


Asunto(s)
Fosfoenolpiruvato Carboxilasa , Poaceae , Secuencia de Aminoácidos , Poaceae/genética , Poaceae/metabolismo , Fosfoenolpiruvato Carboxilasa/genética , Fosfoenolpiruvato Carboxilasa/química , Fosfoenolpiruvato Carboxilasa/metabolismo , Evolución Biológica , Plantas/metabolismo , Serina/genética , Cinética
6.
Plant J ; 105(6): 1677-1688, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33345397

RESUMEN

The high rates of photosynthesis and the carbon-concentrating mechanism (CCM) in C4 plants are initiated by the enzyme phosphoenolpyruvate (PEP) carboxylase (PEPC). The flow of inorganic carbon into the CCM of C4 plants is driven by PEPC's affinity for bicarbonate (KHCO3 ), which can be rate limiting when atmospheric CO2 availability is restricted due to low stomatal conductance. We hypothesize that natural variation in KHCO3 across C4 plants is driven by specific amino acid substitutions to impact rates of C4 photosynthesis under environments such as drought that restrict stomatal conductance. To test this hypothesis, we measured KHCO3 from 20 C4 grasses to compare kinetic properties with specific amino acid substitutions. There was nearly a twofold range in KHCO3 across these C4 grasses (24.3 ± 1.5 to 46.3 ± 2.4 µm), which significantly impacts modeled rates of C4 photosynthesis. Additionally, molecular engineering of a low-HCO3- affinity PEPC identified key domains that confer variation in KHCO3 . This study advances our understanding of PEPC kinetics and builds the foundation for engineering increased-HCO3- affinity and C4 photosynthetic efficiency in important C4 crops.


Asunto(s)
Fosfoenolpiruvato Carboxilasa/metabolismo , Proteínas de Plantas/metabolismo , Dióxido de Carbono/metabolismo , Cinética , Fosfoenolpiruvato Carboxilasa/genética , Fotosíntesis/genética , Fotosíntesis/fisiología , Proteínas de Plantas/genética
7.
New Phytol ; 236(4): 1281-1295, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35959528

RESUMEN

Mesophyll CO2 conductance (gm ) in C3 species responds to short-term (minutes) changes in environment potentially due to changes in leaf anatomical and biochemical properties and measurement artefacts. Compared with C3 species, there is less information on gm responses to short-term changes in environmental conditions such as partial pressure of CO2 (pCO2 ) across diverse C4 species and the potential determinants of these responses. Using 16 C4 grasses we investigated the response of gm to short-term changes in pCO2 and its relationship with leaf anatomy and biochemistry. In general, gm increased as pCO2 decreased (statistically significant increase in 12 species), with percentage increases in gm ranging from +13% to +250%. Greater increase in gm at low pCO2 was observed in species exhibiting relatively thinner mesophyll cell walls along with greater mesophyll surface area exposed to intercellular air spaces, leaf N, photosynthetic capacity and activities of phosphoenolpyruvate carboxylase and Rubisco. Species with greater CO2 responses of gm were also able to maintain their leaf water-use efficiencies (TEi ) under low CO2 . Our study advances understanding of CO2 response of gm in diverse C4 species, identifies the key leaf traits related to this response and has implications for improving C4 photosynthetic models and TEi through modification of gm .


Asunto(s)
Células del Mesófilo , Poaceae , Células del Mesófilo/metabolismo , Poaceae/fisiología , Ribulosa-Bifosfato Carboxilasa/metabolismo , Fosfoenolpiruvato Carboxilasa/metabolismo , Dióxido de Carbono/metabolismo , Hojas de la Planta/fisiología , Fotosíntesis , Agua/metabolismo
8.
Plant Cell Environ ; 45(5): 1382-1397, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35233800

RESUMEN

Carbonic anhydrase (CA) performs the first enzymatic step of C4 photosynthesis by catalysing the reversible hydration of dissolved CO2 that diffuses into mesophyll cells from intercellular airspaces. This CA-catalysed reaction provides the bicarbonate used by phosphoenolpyruvate carboxylase to generate products that flow into the C4 carbon-concentrating mechanism (CCM). It was previously demonstrated that the Zea mays ca1ca2 double mutant lost 97% of leaf CA activity, but there was little difference in the growth phenotype under ambient CO2 partial pressures (pCO2 ). We hypothesise that since CAs are among the fastest enzymes, minimal activity from a third CA, CA8, can provide the inorganic carbon needed to drive C4 photosynthesis. We observed that removing CA8 from the maize ca1ca2 background resulted in plants that had 0.2% of wild-type leaf CA activity. These ca1ca2ca8 plants had reduced photosynthetic parameters and could only survive at elevated pCO2 . Photosynthetic and carbon isotope analysis combined with modelling of photosynthesis and carbon isotope discrimination was used to determine if ca1ca2ca8 plants had a functional C4 cycle or were relying on direct CO2 diffusion to ribulose 1,5-bisphosphate carboxylase/oxygenase within bundle sheath cells. The results suggest that leaf CA activity in ca1ca2ca8 plants was not sufficient to sustain the C4 CCM.


Asunto(s)
Dióxido de Carbono , Anhidrasas Carbónicas , Carbono , Isótopos de Carbono , Anhidrasas Carbónicas/metabolismo , Fotosíntesis/genética , Hojas de la Planta/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Zea mays/metabolismo
9.
J Exp Bot ; 73(3): 927-938, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-34698863

RESUMEN

The CO2-concentrating mechanism (CCM) in C4 plants is initiated by the uptake of bicarbonate (HCO3-) via phosphoenolpyruvate carboxylase (PEPC). Generation of HCO3- for PEPC is determined by the interaction between mesophyll CO2 conductance and the hydration of CO2 to HCO3- by carbonic anhydrase (CA). Genetic reduction of CA was previously shown not to limit C4 photosynthesis under ambient atmospheric partial pressures of CO2 (pCO2). However, CA activity varies widely across C4 species and it is unknown if there are specific environmental conditions (e.g. high temperature) where CA may limit HCO3- production for C4 photosynthesis. Additionally, CA activity has been suggested to influence mesophyll conductance, but this has not been experimentally tested. We hypothesize that CA activity can limit PEPC at high temperatures, particularly at low pCO2, but does not directly influence gm. Here we tested the influence of genetically reduced CA activity on photosynthesis and gm in the C4 plant Zea mays under a range of pCO2 and temperatures. Reduced CA activity limited HCO3- production for C4 photosynthesis at low pCO2 as temperatures increased, but did not influence mesophyll conductance. Therefore, high leaf CA activity may enhance C4 photosynthesis under high temperature when stomatal conductance restricts the availability of atmospheric CO2.


Asunto(s)
Dióxido de Carbono , Anhidrasas Carbónicas , Ciclo del Carbono , Anhidrasas Carbónicas/genética , Anhidrasas Carbónicas/metabolismo , Células del Mesófilo/metabolismo , Fotosíntesis/genética , Hojas de la Planta/metabolismo , Temperatura
10.
Plant J ; 103(4): 1590-1602, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32438487

RESUMEN

Breeding economically important C4 crops for enhanced whole-plant water-use efficiency (WUEplant ) is needed for sustainable agriculture. WUEplant is a complex trait and an efficient phenotyping method that reports on components of WUEplant , such as intrinsic water-use efficiency (WUEi , the rate of leaf CO2 assimilation relative to water loss via stomatal conductance), is needed. In C4 plants, theoretical models suggest that leaf carbon isotope composition (δ13 C), when the efficiency of the CO2 -concentrating mechanism (leakiness, ϕ) remains constant, can be used to screen for WUEi . The limited information about how ϕ responds to water limitations confines the application of δ13 C for WUEi screening of C4 crops. The current research aimed to test the response of ϕ to short- or long-term moderate water limitations, and the relationship of δ13 C with WUEi and WUEplant , by addressing potential mesophyll CO2 conductance (gm ) and biochemical limitations in the C4 plant Sorghum bicolor. We demonstrate that gm and ϕ are not responsive to short- or long-term water limitations. Additionally, δ13 C was not correlated with gas-exchange estimates of WUEi under short- and long-term water limitations, but showed a significant negative relationship with WUEplant . The observed association between the δ13 C and WUEplant suggests an intrinsic link of δ13 C with WUEi in this C4 plant, and can potentially be used as a screening tool for WUEplant in sorghum.


Asunto(s)
Dióxido de Carbono/metabolismo , Células del Mesófilo/metabolismo , Transpiración de Plantas , Sorghum/metabolismo , Agua/metabolismo , Hojas de la Planta/metabolismo , Suelo , Xilema/metabolismo
11.
Plant J ; 102(6): 1234-1248, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31968138

RESUMEN

Genetic selection for whole-plant water use efficiency (yield per transpiration; WUEplant ) in any crop-breeding programme requires high-throughput phenotyping of component traits of WUEplant such as intrinsic water use efficiency (WUEi ; CO2 assimilation rate per stomatal conductance). Measuring WUEi by gas exchange measurements is laborious and time consuming and may not reflect an integrated WUEi over the life of the leaf. Alternatively, leaf carbon stable isotope composition (δ13 Cleaf ) has been suggested as a potential time-integrated proxy for WUEi that may provide a tool to screen for WUEplant . However, a genetic link between δ13 Cleaf and WUEplant in a C4 species has not been well established. Therefore, to determine if there is a genetic relationship in a C4 plant between δ13 Cleaf and WUEplant under well watered and water-limited growth conditions, a high-throughput phenotyping facility was used to measure WUEplant in a recombinant inbred line (RIL) population created between the C4 grasses Setaria viridis and S. italica. Three quantitative trait loci (QTL) for δ13 Cleaf were found and co-localized with transpiration, biomass accumulation, and WUEplant . Additionally, WUEplant for each of the δ13 Cleaf QTL allele classes was negatively correlated with δ13 Cleaf , as would be predicted when WUEi influences WUEplant . These results demonstrate that δ13 Cleaf is genetically linked to WUEplant , likely to be through their relationship with WUEi , and can be used as a high-throughput proxy to screen for WUEplant in these C4 species.


Asunto(s)
Hojas de la Planta/metabolismo , Setaria (Planta)/metabolismo , Alelos , Isótopos de Carbono/metabolismo , Genes de Plantas/genética , Transpiración de Plantas/genética , Sitios de Carácter Cuantitativo/genética , Carácter Cuantitativo Heredable , Setaria (Planta)/genética , Agua/metabolismo
12.
Plant J ; 101(4): 816-830, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31960507

RESUMEN

The conductance of carbon dioxide (CO2 ) from the substomatal cavities to the initial sites of CO2 fixation (gm ) can significantly reduce the availability of CO2 for photosynthesis. There have been many recent reviews on: (i) the importance of gm for accurately modelling net rates of CO2 assimilation, (ii) on how leaf biochemical and anatomical factors influence gm , (iii) the technical limitation of estimating gm , which cannot be directly measured, and (iv) how gm responds to long- and short-term changes in growth and measurement environmental conditions. Therefore, this review will highlight these previous publications but will attempt not to repeat what has already been published. We will instead initially focus on the recent developments on the two-resistance model of gm that describe the potential of photorespiratory and respiratory CO2 released within the mitochondria to diffuse directly into both the chloroplast and the cytosol. Subsequently, we summarize recent developments in the three-dimensional (3-D) reaction-diffusion models and 3-D image analysis that are providing new insights into how the complex structure and organization of the leaf influences gm . Finally, because most of the reviews and literature on gm have traditionally focused on C3 plants we review in the final sections some of the recent developments, current understanding and measurement techniques of gm in C4 and crassulacean acid metabolism (CAM) plants. These plants have both specialized leaf anatomy and either a spatially or temporally separated CO2 concentrating mechanisms (C4 and CAM, respectively) that influence how we interpret and estimate gm compared with a C3 plants.


Asunto(s)
Metabolismo Ácido de las Crasuláceas , Células del Mesófilo/metabolismo , Hojas de la Planta/anatomía & histología , Plantas/metabolismo , Dióxido de Carbono/metabolismo , Imagenología Tridimensional , Modelos Biológicos , Hojas de la Planta/fisiología , Temperatura
13.
Plant Biotechnol J ; 19(3): 575-588, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33016576

RESUMEN

Introduction of a C4 photosynthetic mechanism into C3 crops offers an opportunity to improve photosynthetic efficiency, biomass and yield in addition to potentially improving nitrogen and water use efficiency. To create a two-cell metabolic prototype for an NADP-malic enzyme type C4 rice, we transformed Oryza sativa spp. japonica cultivar Kitaake with a single construct containing the coding regions of carbonic anhydrase, phosphoenolpyruvate (PEP) carboxylase, NADP-malate dehydrogenase, pyruvate orthophosphate dikinase and NADP-malic enzyme from Zea mays, driven by cell-preferential promoters. Gene expression, protein accumulation and enzyme activity were confirmed for all five transgenes, and intercellular localization of proteins was analysed. 13 CO2 labelling demonstrated a 10-fold increase in flux though PEP carboxylase, exceeding the increase in measured in vitro enzyme activity, and estimated to be about 2% of the maize photosynthetic flux. Flux from malate via pyruvate to PEP remained low, commensurate with the low NADP-malic enzyme activity observed in the transgenic lines. Physiological perturbations were minor and RNA sequencing revealed no substantive effects of transgene expression on other endogenous rice transcripts associated with photosynthesis. These results provide promise that, with enhanced levels of the C4 proteins introduced thus far, a functional C4 pathway is achievable in rice.


Asunto(s)
Oryza , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Oryza/genética , Oryza/metabolismo , Fosfoenolpiruvato Carboxilasa/genética , Fosfoenolpiruvato Carboxilasa/metabolismo , Fotosíntesis , Piruvato Ortofosfato Diquinasa/genética , Piruvato Ortofosfato Diquinasa/metabolismo , Zea mays/metabolismo
14.
New Phytol ; 230(5): 1802-1814, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33605441

RESUMEN

Leaf hydraulic and mesophyll CO2 conductance are both influenced by leaf anatomical traits, however it is poorly understood how the temperature response of these conductances differs between C4 and C3 species with distinct leaf anatomy. This study investigated the temperature response of leaf hydraulic conductance (Kleaf ), stomatal (gs ) and mesophyll (gm ) conductance to CO2 , and leaf anatomical traits in phylogenetically related Panicum antidotale (C4 ) and P. bisulcatum (C3 ) grasses. The C4 species had lower hydraulic conductance outside xylem (Kox ) and Kleaf compared with the C3 species. However, the C4 species had higher gm compared with the C3 species. Traits associated with leaf water movement, Kleaf and Kox , increased with temperature more in the C3 than in the C4 species, whereas traits related to carbon uptake, Anet and gm , increased more with temperature in the C4 than the C3 species. Our findings demonstrate that, in addition to a CO2 concentrating mechanism, outside-xylem leaf anatomy in the C4 species P. antidotale favours lower water movement through the leaf and stomata that provides an additional advantage for greater leaf carbon uptake relative to water loss with increasing leaf temperature than in the C3 species P. bisulcatum.


Asunto(s)
Dióxido de Carbono , Fotosíntesis , Células del Mesófilo , Hojas de la Planta , Estomas de Plantas , Temperatura , Agua , Xilema
15.
J Exp Bot ; 72(12): 4373-4383, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33735372

RESUMEN

Plateauing yield and stressful environmental conditions necessitate selecting crops for superior physiological traits with untapped potential to enhance crop performance. Plant productivity is often limited by carbon fixation rates that could be improved by increasing maximum photosynthetic carboxylation capacity (Vcmax). However, Vcmax measurements using gas exchange and biochemical assays are slow and laborious, prohibiting selection in breeding programs. Rapid hyperspectral reflectance measurements show potential for predicting Vcmax using regression models. While several hyperspectral models have been developed, contributions from different spectral regions to predictions of Vcmax have not been clearly identified or linked to biochemical variation contributing to Vcmax. In this study, hyperspectral reflectance data from 350-2500 nm were used to build partial least squares regression models predicting in vivo and in vitro Vcmax. Wild-type and transgenic tobacco plants with antisense reductions in Rubisco content were used to alter Vcmax independent from chlorophyll, carbon, and nitrogen content. Different spectral regions were used to independently build partial least squares regression models and identify key regions linked to Vcmax and other leaf traits. The greatest Vcmax prediction accuracy used a portion of the shortwave infrared region from 2070 nm to 2470 nm, where the inclusion of fewer spectral regions resulted in more accurate models.


Asunto(s)
Nicotiana , Fitomejoramiento , Clorofila , Fotosíntesis , Hojas de la Planta
16.
New Phytol ; 226(6): 1594-1606, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32112409

RESUMEN

The cold acclimations of mesophyll conductance (gm ), bundle-sheath conductance (gbs ) and the CO2 concentrating mechanism (CCM) of C4 plants have not been well studied. Here, we estimated the temperature response of gm , gbs and leakiness (ϕ), the amount of concentrated CO2 that escapes the bundle-sheath cells, for the chilling-tolerant C4 plant Miscanthus × giganteus grown at 14 and 25°C. To estimate these parameters, we combined the C4 -enzyme-limited photosynthesis model and the Δ13 C discrimination model. These combined models were parameterised using in vitro activities of carbonic anhydrase (CA), pyruvate, phosphate dikinase (PPDK), ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), and phosphoenolpyruvate carboxylase (PEPc). Cold-grown Miscanthus plants increased in vitro activities of RuBisCO and PPDK but decreased PEPc activity compared with warm-grown plants. Mesophyll conductance and gbs responded strongly to measurement temperatures but did not differ between plants from the two growth temperatures. Furthermore, modelling showed that ϕ increased with measurement temperatures for both cold-grown and warm-grown plants, but was only marginally larger in cold-grown compared with warm-grown plants. Our results in Miscanthus support that gm and gbs are unresponsive to growth temperature and that the CCM is able to acclimate to cold through increased activity of PPDK and RuBisCO.


Asunto(s)
Poaceae , Zea mays , Aclimatación , Dióxido de Carbono , Células del Mesófilo/metabolismo , Fotosíntesis , Poaceae/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Zea mays/metabolismo
17.
New Phytol ; 225(1): 169-182, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31400232

RESUMEN

Mesophyll conductance (gm ) is the diffusion of CO2 from intercellular air spaces (IAS) to the first site of carboxylation in the mesophyll cells. In C3 species, gm is influenced by diverse leaf structural and anatomical traits; however, little is known about traits affecting gm in C4 species. To address this knowledge gap, we used online oxygen isotope discrimination measurements to estimate gm and microscopy techniques to measure leaf structural and anatomical traits potentially related to gm in 18 C4 grasses. In this study, gm scaled positively with photosynthesis and intrinsic water-use efficiency (TEi ), but not with stomatal conductance. Also, gm was not determined by a single trait but was positively correlated with adaxial stomatal densities (SDada ), stomatal ratio (SR), mesophyll surface area exposed to IAS (Smes ) and leaf thickness. However, gm was not related to abaxial stomatal densities (SDaba ) and mesophyll cell wall thickness (TCW ). Our study suggests that greater SDada and SR increased gm by increasing Smes and creating additional parallel pathways for CO2 diffusion inside mesophyll cells. Thus, SDada , SR and Smes are important determinants of C4 -gm and could be the target traits selected or modified for achieving greater gm and TEi in C4 species.


Asunto(s)
Estomas de Plantas/fisiología , Poaceae/fisiología , Agua/metabolismo , Aire , Difusión , Espacio Extracelular/fisiología , Células del Mesófilo/fisiología , Isótopos de Oxígeno/análisis , Fotosíntesis , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Estomas de Plantas/anatomía & histología , Poaceae/anatomía & histología
18.
Plant Cell Environ ; 43(8): 1897-1910, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32449181

RESUMEN

In habitats with low water availability, a fundamental challenge for plants will be to maximize photosynthetic C-gain while minimizing transpirational water-loss. This trade-off between C-gain and water-loss can in part be achieved through the coordination of leaf-level photosynthetic and hydraulic traits. To test the relationship of photosynthetic C-gain and transpirational water-loss, we grew, under common growth conditions, 18 C4 grasses adapted to habitats with different mean annual precipitation (MAP) and measured leaf-level structural and anatomical traits associated with mesophyll conductance (gm ) and leaf hydraulic conductance (Kleaf ). The C4 grasses adapted to lower MAP showed greater mesophyll surface area exposed to intercellular air spaces (Smes ) and adaxial stomatal density (SDada ) which supported greater gm . These grasses also showed greater leaf thickness and vein-to-epidermis distance, which may lead to lower Kleaf . Additionally, grasses with greater gm and lower Kleaf also showed greater photosynthetic rates (Anet ) and leaf-level water-use efficiency (WUE). In summary, we identify a suite of leaf-level traits that appear important for adaptation of C4 grasses to habitats with low MAP and may be useful to identify C4 species showing greater Anet and WUE in drier conditions.


Asunto(s)
Hojas de la Planta/fisiología , Poaceae/fisiología , Adaptación Fisiológica , Ecosistema , Células del Mesófilo/fisiología , Fotosíntesis , Hojas de la Planta/anatomía & histología , Poaceae/anatomía & histología
19.
BMC Genomics ; 20(1): 138, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30767781

RESUMEN

BACKGROUND: Carbonic anhydrase (CA) catalyzes the hydration of CO2 in the first biochemical step of C4 photosynthesis, and has been considered a potentially rate-limiting step when CO2 availability within a leaf is low. Previous work in Zea mays (maize) with a double knockout of the two highest-expressed ß-CA genes, CA1 and CA2, reduced total leaf CA activity to less than 3% of wild-type. Surprisingly, this did not limit photosynthesis in maize at ambient or higher CO2concentrations. However, the ca1ca2 mutants exhibited reduced rates of photosynthesis at sub-ambient CO2, and accumulated less biomass when grown under sub-ambient CO2 (9.2 Pa). To further clarify the importance of CA for C4 photosynthesis, we assessed gene expression changes in wild-type, ca1 and ca1ca2 mutants in response to changes in pCO2 from 920 to 9.2 Pa. RESULTS: Leaf samples from each genotype were collected for RNA-seq analysis at high CO2 and at two time points after the low CO2 transition, in order to identify early and longer-term responses to CO2 deprivation. Despite the existence of multiple isoforms of CA, no other CA genes were upregulated in CA mutants. Although photosynthetic genes were downregulated in response to low CO2, differential expression was not observed between genotypes. However, multiple indicators of carbon starvation were present in the mutants, including amino acid synthesis, carbohydrate metabolism, and sugar signaling. In particular, multiple genes previously implicated in low carbon stress such as asparagine synthetase, amino acid transporters, trehalose-6-phosphate synthase, as well as many transcription factors, were strongly upregulated. Furthermore, genes in the CO2 stomatal signaling pathway were differentially expressed in the CA mutants under low CO2. CONCLUSIONS: Using a transcriptomic approach, we showed that carbonic anhydrase mutants do not compensate for the lack of CA activity by upregulating other CA or photosynthetic genes, but rather experienced extreme carbon stress when grown under low CO2. Our results also support a role for CA in the CO2 stomatal signaling pathway. This study provides insight into the importance of CA for C4 photosynthesis and its role in stomatal signaling.


Asunto(s)
Dióxido de Carbono/metabolismo , Anhidrasas Carbónicas/genética , Genes de Plantas , Fotosíntesis/genética , Estomas de Plantas/metabolismo , Zea mays/enzimología , Zea mays/genética , Alelos , Acuaporinas/metabolismo , Secuencia de Bases , Metabolismo de los Hidratos de Carbono , Anhidrasas Carbónicas/fisiología , Pared Celular/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Genotipo , Isoenzimas/genética , Isoenzimas/fisiología , Óxido Nítrico/metabolismo , Hojas de la Planta/metabolismo , Homología de Secuencia de Ácido Nucleico , Transducción de Señal
20.
New Phytol ; 222(1): 122-131, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30394538

RESUMEN

The internal CO2 gradient imposed by mesophyll conductance (gm ) reduces substrate availability for C3 photosynthesis. With several assumptions, estimates of gm can be made from coupled leaf gas exchange with isoflux analysis of carbon ∆13 C-gm and oxygen in CO2 , coupled with transpired water (H2 O) ∆18 O-gm to partition gm into its biochemical and anatomical components. However, these assumptions require validation under changing leaf temperatures. To test these assumptions, we measured and modeled the temperature response (15-40°C) of ∆13 C-gm and ∆18 O-gm along with leaf biochemistry in the C3 grass Panicum bisulcatum, which has naturally low carbonic anhydrase activity. Our study suggests that assumptions regarding the extent of isotopic equilibrium (θ) between CO2 and H2 O at the site of exchange, and that the isotopic composition of the H2 O at the sites of evaporation ( δw-e18 ) and at the site of exchange ( δw-ce18 ) are similar, may lead to errors in estimating the ∆18 O-gm temperature response. The input parameters for ∆13 C-gm appear to be less sensitive to temperature. However, this needs to be tested in species with diverse carbonic anhydrase activity. Additional information on the temperature dependency of cytosolic and chloroplastic pH may clarify uncertainties used for ∆18 O-gm under changing leaf temperatures.


Asunto(s)
Dióxido de Carbono/metabolismo , Isótopos de Carbono/metabolismo , Células del Mesófilo/metabolismo , Isótopos de Oxígeno/metabolismo , Temperatura , Incertidumbre , Anhidrasas Carbónicas/metabolismo , Cloroplastos/metabolismo , Concentración de Iones de Hidrógeno , Modelos Biológicos , Ribulosa-Bifosfato Carboxilasa/metabolismo , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA