RESUMEN
Deciphering the pathways that regulate human epidermal precursor cell fate is necessary for future developments in skin repair and graft bioengineering. Among them, characterization of pathways regulating the keratinocyte (KC) precursor immaturity versus differentiation balance is required for improving the efficiency of KC precursor ex vivo expansion. In this study, we show that the transcription factor MXD4/MAD4 is expressed at a higher level in quiescent KC stem/progenitor cells located in the basal layer of human epidermis than in cycling progenitors. In holoclone KCs, stable short hairpin-RNAâmediated decreased expression of MXD4/MAD4 increases MYC expression, whose modulation increases the proliferation of KC precursors and maintenance of their clonogenic potential and preserves the functionality of these precursors in three-dimensional epidermis organoid generation. Altogether, these results characterize MXD4/MAD4 as a major piece of the stemness puzzle in the human epidermis KC lineage and pinpoint an original avenue for ex vivo expansion of human KC precursors.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Células Epidérmicas , Queratinocitos , Humanos , Diferenciación Celular , Epidermis/metabolismo , Queratinocitos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismoRESUMEN
Chronic wounds, such as leg ulcers associated with sickle cell disease, occur as a consequence of a prolonged inflammatory phase during the healing process. They are extremely hard to heal and persist as a significant health care problem due to the absence of effective treatment and the uprising number of patients. Indeed, there is a critical need to develop novel cell- and tissue-based therapies to treat these chronic wounds. Development in skin engineering leads to a small catalogue of available substitutes manufactured in Good Manufacturing Practices compliant (GMPc) conditions. Those substitutes are produced using primary cells that could limit their use due to restricted sourcing. Here, we propose GMPc protocols to produce functional populations of keratinocytes and fibroblasts derived from pluripotent stem cells to reconstruct the associated dermo-epidermal substitute with plasma-based fibrin matrix. In addition, this manufactured composite skin is biologically active and enhances in vitro wounding of keratinocytes. The proposed composite skin opens new perspectives for skin replacement using allogeneic substitute.
Asunto(s)
Células Madre Pluripotentes , Piel Artificial , Humanos , Queratinocitos , Piel , Ingeniería de Tejidos/métodosRESUMEN
Epidermolysis bullosa simplex (EBS), an autosomal dominant skin disorder, is characterized by skin fragility. Genetically, the majority of cases are related to missense sequence variations in two keratin genes K5 or K14, leading to cytolysis of basal keratinocytes (KCs) and intraepidermal blistering. Progress toward the identification of treatments has been hampered by an incomplete understanding of the mechanisms underlying this disease and availability of relevant and reliable in vitro models recapitulating the physiopathological mechanisms. Recent advances in stem cell field have fueled the prospect that these limitations could be overcome, thanks to the availability of disease-specific human induced pluripotent stem cells (hiPSCs). In this study, we generated hiPSC-derived KCs from patients carrying keratin gene K5-dominant sequence variations and compared them with nonaffected hiPSC-derived KCs as well as their primary counterparts. Our results showed that EBS hiPSC-derived KCs displayed proliferative defects, increased capacity to migrate, alteration of extracellular signalâregulated kinase signaling pathway, and cytoplasmic keratin filament aggregates as observed in primary EBS KCs. Of interest, EBS hiPSC-derived KCs exhibited downregulation of hemidesmosomal proteins, revealing the different effects of keratin gene K5 sequence variations on keratin cytoskeletal organization. With a combination of culture miniaturization and treatment with the chaperone molecule 4-phenylbutyric acid, our results showed that hiPSC-derived KCs represent a suitable model for identifying novel therapies for EBS.
Asunto(s)
Epidermólisis Ampollosa Simple , Células Madre Pluripotentes Inducidas , Epidermólisis Ampollosa Simple/metabolismo , Quinasas MAP Reguladas por Señal Extracelular , Humanos , Queratina-14/genética , Queratina-14/metabolismo , Queratina-5/genética , Queratina-5/metabolismo , Queratinocitos/metabolismo , Queratinas/genética , Queratinas/metabolismo , Mutación , FenotipoRESUMEN
The functional definition of somatic adult stem cells is based on their regenerative capacity, which allows tissue regeneration throughout life. Thus, refining methodologies to characterize this capacity is of great importance for progress in the fundamental knowledge of specific keratinocyte subpopulations but also for preclinical and clinical research, considering the high potential of keratinocytes in cell therapy. We present here a methodology which we define as iterative xenografting, which originates in the classical model of human skin substitute xenografts onto immunodeficient recipient mice. The principle of this functional assay is first to perform primary xenografts to assess graft take and the quality of epidermal differentiation. Then, human keratinocytes are extracted from primary graft samples to perform secondary xenografts, to assess the presence and preservation of functional keratinocyte stem cells with long-term regenerative potential. In the example of experiments shown, iterative skin xenografting was used to document the high regenerative potential of epidermal holoclone keratinocytes.
Asunto(s)
Queratinocitos/citología , Queratinocitos/trasplante , Células Madre/citología , Ingeniería de Tejidos/métodos , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Células Nutrientes/citología , Humanos , Ratones , Piel Artificial , Trasplante de Células Madre , Trasplante HeterólogoRESUMEN
Genetic and epigenetic characterization of the large cellular diversity observed within tissues is essential to understanding the molecular networks that ensure the regulation of homeostasis, repair, and regeneration, but also pathophysiological processes. Skin is composed of multiple cell lineages and is therefore fully concerned by this complexity. Even within one particular lineage, such as epidermal keratinocytes, different immaturity statuses or differentiation stages are represented, which are still incompletely characterized. Accordingly, there is presently great demand for methods and technologies enabling molecular investigation at single-cell level. Also, most current methods used to analyze gene expression at RNA level, such as RT-qPCR, do not directly provide quantitative data, but rather comparative ratios between two conditions. A second important need in skin biology is thus to determine the number of RNA molecules in a given cell sample. Here, we describe a workflow that we have set up to meet these specific needs, by means of transcript quantification in cellular micro-samples using flow cytometry sorting and reverse transcription-digital droplet polymerase chain reaction. As a proof-of-principle, the workflow was tested for the detection of transcription factor transcripts expressed at low levels in keratinocyte precursor cells. A linear correlation was found between quantification values and keratinocyte input numbers in a low quantity range from 40 cells to 1 cell. Interpretable signals were repeatedly obtained from single-cell samples corresponding to estimated expression levels as low as 10-20 transcript copies per keratinocyte or less. The present workflow may have broad applications for the detection and quantification of low-abundance nucleic acid species in single cells, opening up perspectives for the study of cell-to-cell genetic and molecular heterogeneity. Interestingly, the process described here does not require internal references such as house-keeping gene expression, as it is initiated with defined cell numbers, precisely sorted by flow cytometry.
Asunto(s)
Queratinocitos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Análisis de la Célula Individual/métodos , Células Cultivadas , Epidermis/metabolismo , Humanos , Queratinocitos/citología , ARN/análisis , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Expanded autologous skin keratinocytes are currently used in cutaneous cell therapy, and embryonic-stem-cell-derived keratinocytes could become a complementary alternative. Regardless of keratinocyte provenance, for efficient therapy it is necessary to preserve immature keratinocyte precursors during cell expansion and graft processing. Here, we show that stable and transient downregulation of the transcription factor Krüppel-like factor 4 (KLF4) in keratinocyte precursors from adult skin, using anti-KLF4 RNA interference or kenpaullone, promotes keratinocyte immaturity and keratinocyte self-renewal in vitro, and enhances the capacity for epidermal regeneration in mice. Both stable and transient KLF4 downregulation had no impact on the genomic integrity of adult keratinocytes. Moreover, transient KLF4 downregulation in human-embryonic-stem-cell-derived keratinocytes increased the efficiency of skin-orientated differentiation and of keratinocyte immaturity, and was associated with improved generation of epidermis. As a regulator of the cell fate of keratinocyte precursors, KLF4 could be used for promoting the ex vivo expansion and maintenance of functional immature keratinocyte precursors.