Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 19(5): e1011397, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37216409

RESUMEN

Mycoviruses are widely present in all major groups of fungi but those in entomopathogenic Metarhizium spp. remain understudied. In this investigation, a novel double-stranded (ds) RNA virus is isolated from Metarhizium majus and named Metarhizium majus partitivirus 1 (MmPV1). The complete genome sequence of MmPV1 comprises two monocistronic dsRNA segments (dsRNA 1 and dsRNA 2), which encode an RNA-dependent RNA polymerase (RdRp) and a capsid protein (CP), respectively. MmPV1 is classified as a new member of the genus Gammapartitivirus in the family Partitiviridae based on phylogenetic analysis. As compared to an MmPV1-free strain, two isogenic MmPV1-infected single-spore isolates were compromised in terms of conidiation, and tolerance to heat shock and UV-B irradiation, while these phenotypes were accompanied by transcriptional suppression of multiple genes involved in conidiation, heat shock response and DNA damage repair. MmPV1 attenuated fungal virulence since infection resulted in reduced conidiation, hydrophobicity, adhesion, and cuticular penetration. Additionally, secondary metabolites were significantly altered by MmPV1 infection, including reduced production of triterpenoids, and metarhizins A and B, and increased production of nitrogen and phosphorus compounds. However, expression of individual MmPV1 proteins in M. majus had no impact on the host phenotype, suggesting insubstantive links between defective phenotypes and a single viral protein. These findings indicate that MmPV1 infection decreases M. majus fitness to its environment and its insect-pathogenic lifestyle and environment through the orchestration of the host conidiation, stress tolerance, pathogenicity, and secondary metabolism.


Asunto(s)
Metarhizium , Virus ARN , Virulencia , Metarhizium/genética , Metabolismo Secundario , Filogenia , Virus ARN/genética , Esporas Fúngicas/genética
2.
J Gen Virol ; 104(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36748490

RESUMEN

The family Hadakaviridae, including the genus Hadakavirus, accommodates capsidless viruses with a 10- or 11-segmented positive-sense (+) RNA genome. Currently known hosts are ascomycetous filamentous fungi. Although phylogenetically related to polymycovirids with a segmented double-stranded RNA genome and certain encapsidated picorna-like viruses, hadakavirids are distinct in their lack of a capsid ('hadaka' means naked in Japanese) and their consequent inability to be pelleted by conventional ultracentrifugation; they show ribonuclease susceptibility in host tissue homogenates. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Hadakaviridae, which is available at ictv.global/report/hadakaviridae.


Asunto(s)
Ascomicetos , Virus ARN , Virus , Virus ARN/genética , Genoma Viral , Virus/genética , Proteínas de la Cápside/genética , Replicación Viral , Virión/genética
3.
J Gen Virol ; 104(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36748548

RESUMEN

The family Yadokariviridae, with the genera Alphayadokarivirus and Betayadokarivirus, includes capsidless non-segmented positive-sense (+) RNA viruses that hijack capsids from phylogenetically distant double-stranded RNA viruses. Yadokarivirids likely replicate inside the hijacked heterocapsids using their own RNA-directed RNA polymerase, mimicking dsRNA viruses despite their phylogenetic placement in a (+) RNA virus lineage. Yadokarivirids can have negative or positive impacts on their host fungi, through interactions with the capsid donor dsRNA viruses. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) report on the family Yadokariviridae, which is available at ictv.global/report/yadokariviridae.


Asunto(s)
Virus ARN , Virus , Filogenia , Virus/genética , Virus ARN/genética , Proteínas de la Cápside/genética , Hongos , Genoma Viral , Replicación Viral , Virión/genética
4.
J Gen Virol ; 104(11)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-38015047

RESUMEN

Paeciliomyces variotii is a thermo-tolerant, ubiquitous fungus commonly found in food products, indoor environments, soil and clinical samples. It is a well-known biocontrol agent used against phytopathogenic fungi and its metabolites have many industrial applications. Rare reports of P. variotii-related human infections have been found in the medical literature. In this study, we report for the first time the infection of P. variotii isolated from a soil sample collected in a rice field with a double-stranded RNA virus, Paeciliomyces variotii partitivirus 1 (PvPV-1) in the family Partitiviridae. P. variotii harboured icosahedral virus particles 30 nm in diameter with two dsRNA segments 1758 and 1356 bp long. Both dsRNA1 and dsRNA2 have a single open reading frame encoding proteins of 63 and 40 kDa, respectively. These proteins have significant similarity to the RNA-dependent RNA polymerase and capsid protein encoded by the genomic segments of several viruses from the family Partitiviridae. Phylogenetic analysis revealed that PvPV-1 belongs to the family Partitiviridae but in an unclassified group/genus, tentatively nominated Zetapartitivirus. PvPV-1 was found to increase the growth rate of the host fungus, as indicated by time course experiments performed on a range of different media for virus-infected and virus-free isogenic lines. Further, dual-culture assays performed for both isogenic lines confirmed the antagonistic potential of P. variotii against other phytopathogenic fungi. The findings of this study assist us in understanding P. variotii as a potential biocontrol agent, together with plant-fungus-virus interactions.


Asunto(s)
Byssochlamys , Proteínas de la Cápside , Humanos , Filogenia , Suelo
5.
Arch Virol ; 168(5): 145, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37076649

RESUMEN

Entomopathogenic fungi have potential as biocontrol agents against insect pests, and mycovirus-mediated hypervirulence may enhance their efficacy. Before initiating research on hypervirulence, the presence or absence of double-stranded (ds) RNA elements was determined in 94 Korean entomopathogenic fungi. dsRNA elements varying in size from ca. 0.8 to 7 kbp were found in 14.9% (14/94) of the strains examined, including Beauveria bassiana, Metarhizium pemphigi, M. pinghaense, M. rileyi, and Cordyceps fumosorosea. This study provides information on the incidence and electrophoretic banding patterns of dsRNA elements and is the first report of mycoviruses entomopathogenic fungi in Korea.


Asunto(s)
Beauveria , Virus Fúngicos , Virus Fúngicos/genética , Incidencia , ARN Bicatenario/genética , República de Corea/epidemiología
6.
Arch Virol ; 168(5): 144, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37071213

RESUMEN

A new double-stranded (ds) RNA mycovirus has been identified in isolate Ds752-1 of the phytopathogenic fungus Dothistroma septosporum, the causal agent of Dothistroma needle blight, also known as red band needle blight or pine needle blight. Dothistroma septosporum chrysovirus 1 (DsCV-1) is a new member of the genus Alphachrysovirus in the family Chrysoviridae. The DsCV-1 genome comprises four dsRNA elements designated 1, 2, 3, and 4 from largest to smallest. dsRNA1 encodes an RNA-dependent RNA polymerase (RdRP) that is most similar to the RdRP of Erysiphe necator associated chrysovirus 3. dsRNA2 potentially encodes two hypothetical proteins, one of which is small and has no homology to known proteins, and one of which is large with significant sequence similarity to the alphachryso-P3 of other alphachrysoviruses. dsRNA3 and dsRNA4 encode a coat protein (CP) and a putative cysteine protease, respectively. This is the first report of a mycovirus infecting the fungus D. septosporum, and DsCV-1 is one of three Chrysoviridae family members found to possess genomic dsRNAs potentially encoding more than one protein.


Asunto(s)
Ascomicetos , Virus Fúngicos , Virus ARN , Proteínas Virales/genética , Genoma Viral , Ascomicetos/genética , Análisis de Secuencia de ADN , ARN Polimerasa Dependiente del ARN/genética , ARN Bicatenario/genética , Filogenia , ARN Viral/genética , Virus Fúngicos/genética , Sistemas de Lectura Abierta
7.
J Gen Virol ; 103(5)2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35639592

RESUMEN

Members of the family Polymycoviridae are small viruses with multi-segmented and non-conventionally encapsidated double-stranded (ds) RNA genomes. Typically, polymycoviruses have four genomic segments, although some have up to eight. The genus Polymycovirus includes several species whose members infect fungi (ascomycetes and basidiomycetes), and oomycetes, altering host morphology, sporulation, growth and virulence. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Polymycoviridae, which is available at ictv.global/report/polymycoviridae.


Asunto(s)
Ascomicetos , Virus ARN , Genoma Viral , Virus ARN/genética , ARN Bicatenario , ARN Viral/genética
8.
Mol Plant Microbe Interact ; 33(1): 98-107, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31652089

RESUMEN

Phoma stem canker (blackleg) is one of the most important diseases of winter oilseed rape (Brassica napus) worldwide and is caused by a complex that comprises at least two species: Leptosphaeria maculans and L. biglobosa. Screening a panel of field Leptosphaeria isolates from B. napus for the presence of mycoviruses revealed the presence of a novel double-stranded RNA quadrivirus in L. biglobosa and no viruses in L. maculans. Following elimination of the mycovirus, virus-infected and virus-free isogenic lines of L. biglobosa were created. A direct comparison of the growth and virulence of these isogenic lines illustrated that virus infection caused hypervirulence and resulted in induced systemic resistance toward L. maculans in B. napus following lower leaf preinoculation with the virus-infected isolate. Analysis of the plant transcriptome suggests that the presence of the virus leads to subtle alterations in metabolism and plant defenses. For instance, transcripts involved in carbohydrate and amino acid metabolism are enriched in plants treated with the virus-infected isolate, while pathogenesis-related proteins, chitinases and WRKY transcription factors are differentially expressed. These results illustrate the potential for deliberate inoculation of plants with hypervirulent L. biglobosa to decrease the severity of Phoma stem canker later in the growing season.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Ascomicetos , Brassica napus , Resistencia a la Enfermedad , Virus Fúngicos , Ascomicetos/fisiología , Brassica napus/microbiología , Brassica napus/virología , Virus Fúngicos/fisiología
9.
J Gen Virol ; 101(2): 143-144, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31958044

RESUMEN

Members of the family Chrysoviridae are isometric, non-enveloped viruses with segmented, linear, dsRNA genomes. There are 3-7 genomic segments, each of which is individually encapsidated. Chrysoviruses infect fungi, plants and possibly insects, and may cause hypovirulence in their fungal hosts. Chrysoviruses have no known vectors and lack an extracellular phase to their replication cycle; they are transmitted via intracellular routes within an individual during hyphal growth, in asexual or sexual spores, or between individuals via hyphal anastomosis. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the family Chrysoviridae, which is available at ictv.global/report/chrysoviridae.


Asunto(s)
Virus ARN/clasificación , Animales , Clasificación , Hongos/patogenicidad , Hongos/virología , Genoma Viral , Insectos/virología , Plantas/virología
10.
J Virol ; 93(9)2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30814279

RESUMEN

Satellite tobacco necrosis virus 1 (STNV-1) is a model system for in vitro RNA encapsidation studies (N. Patel, E. C. Dykeman, R. H. A. Coutts, G. P. Lomonossoff, et al., Proc Natl Acad Sci U S A 112:2227-2232, 2015, https://doi.org/10.1073/pnas.1420812112; N. Patel, E. Wroblewski, G. Leonov, S. E. V. Phillips, et al., Proc Natl Acad Sci U S A 114:12255-12260, 2017, https://doi.org/10.1073/pnas.1706951114), leading to the identification of degenerate packaging signals (PSs) proposed to be involved in the recognition of its genome by the capsid protein (CP). The aim of the present work was to investigate whether these putative PSs can confer selective packaging of STNV-1 RNA in vivo and to assess the prospects of using decoy RNAs in antiviral therapy. We have developed an in planta packaging assay based on the transient expression of STNV-1 CP and have assessed the ability of the resulting virus-like particles (VLPs) to encapsidate mutant STNV-1 RNAs expected to have different encapsidation potential based on in vitro studies. The results revealed that >90% of the encapsidated RNAs are host derived, although there is some selectivity of packaging for STNV-1 RNA and certain host RNAs. Comparison of the packaging efficiencies of mutant STNV-1 RNAs showed that they are encapsidated mainly according to their abundance within the cells, rather than the presence or absence of the putative PSs previously identified from in vitro studies. In contrast, subsequent infection experiments demonstrated that host RNAs represent only <1% of virion content. Although selective encapsidation of certain host RNAs was noted, no direct correlation could be made between this preference and the presence of potential PSs in the host RNA sequences. Overall, the data illustrate that the differences in RNA packaging efficiency identified through in vitro studies are insufficient to explain the specific packaging of STNV-1 RNA.IMPORTANCE Viruses preferentially encapsidate their own genomic RNA, sometimes as a result of the presence of clearly defined packaging signals (PSs) in their genome sequence. Recently, a novel form of short degenerate PSs has been proposed (N. Patel, E. C. Dykeman, R. H. A. Coutts, G. P. Lomonossoff, et al., Proc Natl Acad Sci U S A 112:2227-2232, 2015, https://doi.org/10.1073/pnas.1420812112; N. Patel, E. Wroblewski, G. Leonov, S. E. V. Phillips, et al., Proc Natl Acad Sci U S A 114:12255-12260, 2017, https://doi.org/10.1073/pnas.1706951114) using satellite tobacco necrosis virus 1 (STNV-1) as a model system for in vitro studies. It has been suggested that competing with these putative PSs may constitute a novel therapeutic approach against pathogenic single-stranded RNA viruses. Our work demonstrates that the previously identified PSs have no discernible significance for the selective packaging of STNV-1 in vivo in the presence and absence of competition or replication: viral sequences are encapsidated mostly on the basis of their abundance within the cell, while encapsidation of host RNAs also occurs. Nevertheless, the putative PSs identified in STNV-1 RNA may still have applications in bionanotechnology, such as the in vitro selective packaging of RNA molecules.


Asunto(s)
Regiones no Traducidas 5' , Genoma Viral , Mutación , ARN Viral , Virus Satélite de la Necrosis del Tabaco , Ensamble de Virus , ARN Viral/química , ARN Viral/genética , ARN Viral/metabolismo , Nicotiana/metabolismo , Nicotiana/virología , Virus Satélite de la Necrosis del Tabaco/química , Virus Satélite de la Necrosis del Tabaco/genética , Virus Satélite de la Necrosis del Tabaco/metabolismo
11.
Arch Virol ; 165(8): 1891-1894, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32458177

RESUMEN

A Portuguese isolate of Aspergillus fumigatus was found to contain three double-stranded (ds) RNA elements ranging in size from 1.1 to 1.8 kbp and comprising the genome of a strain of Aspergillus fumigatus partitivirus 1 (AfuPV-1) previously thought to contain only the two largest dsRNA elements. The sequence of the smallest dsRNA element is described here, completing the sequence of the AfuPV-1 genome. Sequence analysis of the element revealed an open reading frame encoding a protein of unknown function similar in size and distantly related to elements previously identified in other members of the family Partitiviridae.


Asunto(s)
Aspergillus fumigatus/virología , Virus Fúngicos/genética , Virus ARN/genética , Genoma Viral/genética , Sistemas de Lectura Abierta/genética , Filogenia , ARN Bicatenario/genética , ARN Viral/genética , Análisis de Secuencia de ADN/métodos
12.
PLoS Pathog ; 13(1): e1006183, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28114361

RESUMEN

The entomopathogenic fungus Beauveria bassiana has a wide host range and is used as a biocontrol agent against arthropod pests. Mycoviruses have been described in phytopathogenic fungi while in entomopathogenic fungi their presence has been reported only rarely. Here we show that 21.3% of a collection of B. bassiana isolates sourced from worldwide locations, harbor dsRNA elements. Molecular characterization of these elements revealed the prevalence of mycoviruses belonging to the Partitiviridae and Totiviridae families, the smallest reported virus to date, belonging to the family Narnaviridae, and viruses unassigned to a family or genus. Of particular importance is the discovery of members of a newly proposed family Polymycoviridae in B. bassiana. Polymycoviruses, previously designated as tetramycoviruses, consist of four non-conventionally encapsidated capped dsRNAs. The presence of additional non-homologous genomic segments in B. bassiana polymycoviruses and other fungi illustrates the unprecedented dynamic nature of the viral genome. Finally, a comparison of virus-free and virus-infected isogenic lines derived from an exemplar B. bassiana isolate revealed a mild hypervirulent effect of mycoviruses on the growth of their host isolate and on its pathogenicity against the greater wax moth Galleria mellonella, highlighting for the first time the potential of mycoviruses as enhancers of biocontrol agents.


Asunto(s)
Beauveria/virología , Virus Fúngicos/genética , Animales , Northern Blotting , Virus Fúngicos/patogenicidad , Genoma Viral , Mariposas Nocturnas/microbiología , Control Biológico de Vectores , Filogenia , Reacción en Cadena de la Polimerasa , ARN Bicatenario/genética , ARN Viral , Virulencia
13.
J Gen Virol ; 99(1): 19-20, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29251589

RESUMEN

The Chrysoviridae is a family of small, isometric, non-enveloped viruses (40 nm in diameter) with segmented dsRNA genomes (typically four segments). The genome segments are individually encapsidated and together comprise 11.5-12.8 kbp. The single genus Chrysovirus includes nine species. Chrysoviruses lack an extracellular phase to their life cycle; they are transmitted via intracellular routes within an individual during hyphal growth, in asexual or sexual spores, or between individuals via hyphal anastomosis. There are no known natural vectors for chrysoviruses. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Chrysoviridae, which is available at www.ictv.global/report/chrysoviridae.


Asunto(s)
Genoma Viral , Filogenia , Virus ARN/genética , ARN Bicatenario/genética , ARN Viral/genética , Virión/genética , Ascomicetos/virología , Basidiomycota/virología , Hifa/virología , Virus ARN/clasificación , Virus ARN/ultraestructura , Esporas Fúngicas/virología , Terminología como Asunto , Virión/ultraestructura , Replicación Viral
14.
Proc Natl Acad Sci U S A ; 112(29): 9100-5, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26139522

RESUMEN

We report the discovery and characterization of a double-stranded RNA (dsRNA) mycovirus isolated from the human pathogenic fungus Aspergillus fumigatus, Aspergillus fumigatus tetramycovirus-1 (AfuTmV-1), which reveals several unique features not found previously in positive-strand RNA viruses, including the fact that it represents the first dsRNA (to our knowledge) that is not only infectious as a purified entity but also as a naked dsRNA. The AfuTmV-1 genome consists of four capped dsRNAs, the largest of which encodes an RNA-dependent RNA polymerase (RdRP) containing a unique GDNQ motif normally characteristic of negative-strand RNA viruses. The third largest dsRNA encodes an S-adenosyl methionine-dependent methyltransferase capping enzyme and the smallest dsRNA a P-A-S-rich protein that apparently coats but does not encapsidate the viral genome as visualized by atomic force microscopy. A combination of a capping enzyme with a picorna-like RdRP in the AfuTmV-1 genome is a striking case of chimerism and the first example (to our knowledge) of such a phenomenon. AfuTmV-1 appears to be intermediate between dsRNA and positive-strand ssRNA viruses, as well as between encapsidated and capsidless RNA viruses.


Asunto(s)
Aspergillus fumigatus/virología , Genoma Viral , ARN Bicatenario/metabolismo , Virus/genética , Virus/patogenicidad , Aspergillus fumigatus/aislamiento & purificación , Células Clonales , Clonación Molecular , ADN Complementario/genética , Interacciones Huésped-Patógeno , Microscopía de Fuerza Atómica , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Replicación Viral , Virus/química
15.
Proc Natl Acad Sci U S A ; 112(7): 2227-32, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25646435

RESUMEN

We present direct experimental evidence that assembly of a single-stranded RNA virus occurs via a packaging signal-mediated mechanism. We show that the sequences of coat protein recognition motifs within multiple, dispersed, putative RNA packaging signals, as well as their relative spacing within a genomic fragment, act collectively to influence the fidelity and yield of capsid self-assembly in vitro. These experiments confirm that the selective advantages for viral yield and encapsidation specificity, predicted from previous modeling of packaging signal-mediated assembly, are found in Nature. Regions of the genome that act as packaging signals also function in translational and transcriptional enhancement, as well as directly coding for the coat protein, highlighting the density of encoded functions within the viral RNA. Assembly and gene expression are therefore direct molecular competitors for different functional folds of the same RNA sequence. The strongest packaging signal in the test fragment, encodes a region of the coat protein that undergoes a conformational change upon contact with packaging signals. A similar phenomenon occurs in other RNA viruses for which packaging signals are known. These contacts hint at an even deeper density of encoded functions in viral RNA, which if confirmed, would have profound consequences for the evolution of this class of pathogens.


Asunto(s)
Virus ARN/genética , ARN Viral/genética , Proteínas de la Cápside/metabolismo , Virus ARN/metabolismo , ARN Viral/química , ARN Viral/metabolismo , Electricidad Estática
16.
BMC Genomics ; 18(1): 416, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28558690

RESUMEN

BACKGROUND: Mycoviruses are viruses that naturally infect and replicate in fungi. Aspergillus fumigatus, an opportunistic pathogen causing fungal lung diseases in humans and animals, was recently shown to harbour several different types of mycoviruses. A well-characterised defence against virus infection is RNA silencing. The A. fumigatus genome encodes essential components of the RNA silencing machinery, including Dicer, Argonaute and RNA-dependent RNA polymerase (RdRP) homologues. Active silencing of double-stranded (ds)RNA and the generation of small RNAs (sRNAs) has been shown for several mycoviruses and it is anticipated that a similar mechanism will be activated in A. fumigatus isolates infected with mycoviruses. RESULTS: To investigate the existence and nature of A. fumigatus sRNAs, sRNA-seq libraries of virus-free and virus-infected isolates were created using Scriptminer adapters and compared. Three dsRNA viruses were investigated: Aspergillus fumigatus partitivirus-1 (AfuPV-1, PV), Aspergillus fumigatus chrysovirus (AfuCV, CV) and Aspergillus fumigatus tetramycovirus-1 (AfuTmV-1, NK) which were selected because they induce phenotypic changes such as coloration and sectoring. The dsRNAs of all three viruses, which included two conventionally encapsidated ones PV and CV and one unencapsidated example NK, were silenced and yielded characteristic vsiRNAs together with co-incidental silencing of host fungal genes which shared sequence homology with the viral genomes. CONCLUSIONS: Virus-derived sRNAs were detected and characterised in the presence of virus infection. Differentially expressed A. fumigatus microRNA-like (miRNA-like) sRNAs and small interfering RNAs (siRNAs) were detected and validated. Host sRNA loci which were differentially expressed as a result of virus infection were also identified. To our knowledge, this is the first study reporting the sRNA profiles of A. fumigatus isolates.


Asunto(s)
Aspergillus fumigatus/genética , Aspergillus fumigatus/virología , Virus Fúngicos/fisiología , Virus ARN/fisiología , ARN Pequeño no Traducido/genética , Análisis de Secuencia de ARN , Sitios Genéticos/genética , Secuenciación de Nucleótidos de Alto Rendimiento
17.
Fungal Genet Biol ; 76: 20-6, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25626171

RESUMEN

Mycoviruses are a specific group of viruses that naturally infect and replicate in fungi. The importance of mycoviruses was revealed after their effects were identified not only in economically important fungi but also in the human pathogenic fungus Aspergillus fumigatus. The latter was shown recently to harbor at least three different types of mycoviruses including a chrysovirus, a partitivirus and an as yet uncharacterized virus. Assessment of virulence in the presence and absence of mycoviruses in A. fumigatus is pivotal to understanding its pathogenicity. Here, we have investigated, for the first time, the effects of mycoviruses on the pathogenicity of A. fumigatus as assessed using larvae of the greater wax moth Galleria mellonella. In order to observe the effects of mycoviruses on pathogenicity, G. mellonella were injected with virus-free and virus-infected isolates of A. fumigatus and post-infection survival times were analyzed along with the fungal burden. Neither chrysovirus nor partitivirus infection affected fungal pathogenicity when survival rates were assessed which, for the chrysovirus, agreed with a previous study on murine pathogenicity. However statistically significant differences were observed in survival rates and fungal burden in the presence of the uncharacterized A78 virus. Here we show, for the first time, the effects of a partitivirus and an uncharacterized A78 virus on the pathogenicity of A. fumigatus.


Asunto(s)
Aspergillus fumigatus/patogenicidad , Aspergillus fumigatus/virología , Mariposas Nocturnas , Virus/clasificación , Animales , Aspergilosis/microbiología , Modelos Animales de Enfermedad , Humanos , Larva/microbiología , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/microbiología , Esporas Fúngicas/fisiología , Virulencia , Virus/aislamiento & purificación
18.
Arch Virol ; 160(3): 873-5, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25577168

RESUMEN

An isolate of the entomopathogenic fungus Beauveria bassiana was found to contain five double-stranded (ds) RNA elements ranging from 1.5 to more than 3 kbp. The complete sequence of the largest dsRNA element is described here. Analysis of the RdRp nucleotide sequence reveals its similarity to unclassified dsRNA elements, such as Alternaria longipes dsRNA virus 1, and its distant relationship to the RNA-dependent RNA polymerases of members of the family Partitiviridae.


Asunto(s)
Beauveria/virología , Genoma Viral , Virus ARN/genética , ARN Viral/genética , Análisis de Secuencia de ADN , Secuencia de Aminoácidos , Animales , Cordados , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , ARN Bicatenario/genética , Homología de Secuencia , Virus
19.
Arch Virol ; 160(3): 883-5, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25613164

RESUMEN

Aspergillus foetidus virus (AfV) has at least two distinct particle types, designated as AfV-fast (F) and AfV-slow (S). AfV-S includes AfV-S1, a victorivirus; AfV-S2, an unclassified satellite RNA; and AfV-S3, a previously uncharacterized dsRNA element. Here, we describe the complete sequence of AfV-S3, which is a short non-coding RNA with no known homologs. AfV-S3 is predicted to form an extended secondary structure, shares a 5' terminus with AfV-S2, and is a satellite RNA possibly dependent on both AfV-S1 and AfV-S2. This work concludes the sequencing of the A. foetidus virome.


Asunto(s)
Satélite de ARN/genética , Análisis de Secuencia de ADN , ADN/genética , Datos de Secuencia Molecular , Conformación de Ácido Nucleico
20.
Virus Res ; 343: 199351, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38453057

RESUMEN

Talaromyces spp. have a worldwide distribution, are ecologically diverse and have been isolated from numerous different substrates. Talaromyces spp. are considered biotechnologically important due to their ability to produce a range of enzymes and pigments. Talaromyces pinophilus, belonging to genus Talaromyces and family Trichocomaceae, is known for producing several important bioactive metabolites. Here we report the isolation and characterisation of a partitivirus from T. pinophilus which we have nominated Talaromyces pinophilus partitivirus-1 (TpPV-1). TpPV-1 possesses a genome consisting of three double stranded (ds) RNA segments i.e., dsRNAs1-3, 1824 bp, 1638 bp and 1451 bp respectively, which are encapsidated in icosahedral particles 35 nm in diameter. Both dsRNA1 and dsRNA2 contain a single open reading frame (ORF) encoding respectively a 572 amino acid (aa) protein of 65 kDa and a 504 aa protein of 50 kDa. The third segment (dsRNA3) is potentially a satellite RNA. Phylogenetic analysis revealed that the TpPV-1 belongs to the family Partitiviridae in the proposed genus Zetapartitivirus. TpPV-1 infection decreases the mycelial growth rate of the host fungus and alters pigmentation as indicated by time course experiments performed on a range of different solid media comparing virus-infected and virus-free isogenic lines. This is the first report of mycovirus infection in T. pinophilus and may provide insights into understanding the effect of the mycovirus on the production of enzymes and pigments by the host fungus.


Asunto(s)
Virus Fúngicos , Virus ARN , Talaromyces , Talaromyces/genética , Talaromyces/metabolismo , Filogenia , ARN Bicatenario/metabolismo , Genoma Viral , ARN Viral/genética , ARN Viral/metabolismo , Sistemas de Lectura Abierta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA