Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nanomedicine ; 13(3): 1031-1040, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27888095

RESUMEN

This study examines the ability of optically-excited titanium dioxide nanoparticles to influence voltage-gated ion channels in retinal horizontal cells. Voltage clamp recordings were obtained in the presence and absence of TiO2 and ultraviolet laser excitation. Significant current changes were observed in response to UV light, particularly in the -40 mV to +40 mV region where voltage-gated Na+ and K+ channels have the highest conductance. Cells in proximity to UV-excited TiO2 exhibited a left-shift in the current-voltage relation of around 10 mV in the activation of Na+ currents. These trends were not observed in control experiments where cells were excited with UV light without being exposed to TiO2. Electrostatic force microscopy confirmed that electric fields can be induced in TiO2 with UV light. Simulations using the Hodgkin-Huxley model yielded results which agreed with the experimental data and showed the I-V characteristics of individual ion channels in the presence of UV-excited TiO2.


Asunto(s)
Canales de Potasio con Entrada de Voltaje/metabolismo , Células Horizontales de la Retina/efectos de los fármacos , Células Horizontales de la Retina/efectos de la radiación , Titanio/farmacología , Canales de Sodio Activados por Voltaje/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/efectos de la radiación , Animales , Bagres , Células Cultivadas , Potenciales de la Membrana , Nanopartículas/química , Técnicas de Placa-Clamp , Células Horizontales de la Retina/metabolismo , Titanio/química , Rayos Ultravioleta
2.
Nanoscale ; 11(36): 16868-16878, 2019 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-31482911

RESUMEN

Ferritin is a protein that regulates the iron ions in humans by storing them in the form of iron oxides. Despite extensive efforts to understand the ferritin iron oxide structures, it is still not clear how ferritin proteins with a distinct light (L) and heavy (H) chain subunit ratio impact the biomineralization process. In situ graphene liquid cell-transmission electron microscopy (GLC-TEM) provides an indispensable platform to study the atomic structure of ferritin mineral cores in their native liquid environment. In this study, we report differences in the iron oxide formation in human spleen ferritins (HSFs) and human heart ferritins (HHFs) using in situ GLC-TEM. Scanning transmission electron microscopy (STEM) along with selected area electron diffraction (SAED) of the mineral core and electron energy loss spectroscopy (EELS) analyses enabled the visualization of morphologies, crystal structures and the chemistry of iron oxide cores in HSFs and HHFs. Our study revealed the presence of metastable ferrihydrite (5Fe2O3·9H2O) as a dominant phase in hydrated HSFs and HHFs, while a stable hematite (α-Fe2O3) phase predominated in non-hydrated HSFs and HHFs. In addition, a higher Fe3+/Fe2+ ratio was found in HHFs in comparison with HSFs. This study provides new understanding on iron-oxide phases that exist in hydrated ferritin proteins from different human organs. Such new insights are needed to map ferritin biomineralization pathways and possible correlations with various iron-related disorders in humans.


Asunto(s)
Compuestos Férricos/metabolismo , Microscopía Electrónica de Transmisión de Rastreo , Miocardio , Bazo , Ferritinas , Grafito , Humanos , Miocardio/metabolismo , Miocardio/ultraestructura , Bazo/metabolismo , Bazo/ultraestructura
3.
Nanoscale ; 11(2): 698-705, 2019 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-30565643

RESUMEN

Understanding the biomineralization pathways in living biological species is a grand challenge owing to the difficulties in monitoring the mineralization process at sub-nanometer scales. Here, we monitored the nucleation and growth of magnetosome nanoparticles in bacteria and in real time using a transmission electron microscope (TEM). To enable biomineralization within the bacteria, we subcultured magnetotactic bacteria grown in iron-depleted medium and then mixed them with iron-rich medium within graphene liquid cells (GLCs) right before imaging the bacteria under the microscope. Using in situ electron energy loss spectroscopy (EELS), the oxidation state of iron in the biomineralized magnetosome was analysed to be magnetite with trace amount of hematite. The increase of mass density of biomineralized magnetosomes as a function of incubation time indicated that the bacteria maintained their functionality during the in situ TEM imaging. Our results underpin that GLCs enables a new platform to observe biomineralization events in living biological species at unprecedented spatial resolution. Understanding the biomineralization processes in living organisms facilitates the design of biomimetic materials, and will enable a paradigm shift in understanding the evolution of biological species.


Asunto(s)
Biomineralización/fisiología , Grafito/química , Magnetosomas/química , Magnetosomas/metabolismo , Magnetospirillum/metabolismo , Microscopía Electrónica de Transmisión , Nanopartículas/química , Medios de Cultivo/química , Compuestos Férricos/metabolismo , Óxido Ferrosoférrico/metabolismo , Hierro/química , Hierro/metabolismo , Magnetosomas/ultraestructura , Magnetospirillum/ultraestructura , Nanopartículas/metabolismo , Nanopartículas/ultraestructura , Espectroscopía de Pérdida de Energía de Electrones
4.
Int J Nanomedicine ; 14: 371-382, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30662261

RESUMEN

BACKGROUND: Islet cell transplantation is one of the key treatments for type 1 diabetes. Understanding the mechanisms of insulin fusion and exocytosis are of utmost importance for the improvement of the current islet cell transplantation and treatment of diabetes. These phenomena have not been fully evaluated due either to the lack of proper dynamic imaging, or the lack of proper cell preservation during imaging at nanoscales. METHODS: By maintaining the native environment of pancreatic ß-cells between two graphene monolayer sheets, we were able to monitor the subcellular events using in situ graphene liquid cell (GLC)-transmission electron microscopy (TEM) with both high temporal and high spatial resolution. RESULTS: For the first time, the nucleation and growth of insulin particles until the later stages of fusion were imaged at nanometer scales. The release of insulin from plasma membrane involves the degradation of plasma membrane and drastic reductions in the shorter axis of the insulin particles. Sequential exocytosis results indicated the nucleation, growth and attachment of the new insulin particles to the already anchored ones, which is thermodynamically favorable due to the reduction in total surface, further reducing the Gibbs free energy. The retraction of the already anchored insulin toward the cell is also monitored for the first time live at nanoscale resolution. CONCLUSION: Investigation of insulin granule dynamics in ß-cells can be investigated via GLC-TEM. Our findings with this technology open new realms for the development of novel drugs on pathological pancreatic ß-cells, because this approach facilitates observing the effects of the stimuli on the live cells and insulin granules.


Asunto(s)
Grafito/química , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestructura , Microscopía Electrónica de Transmisión , Animales , Línea Celular Tumoral , Supervivencia Celular , Exocitosis , Insulina/metabolismo , Fusión de Membrana , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA