Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 370: 122536, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39299125

RESUMEN

In an era of growing environmental, socioeconomic, and market uncertainties, understanding the adaptive strategies of smallholder farmers is paramount for sustainable agricultural productivity and environmental management efforts. We adopted a mixed-methods approach to investigate the adaptive strategies of smallholders in Northwest Cambodia. Our methodology included downscaled climate projections to project future climate conditions and scenarios, household surveys to collect detailed demographic and socioeconomic data, crop monitoring and record-keeping to gather data on productivity and profitability, and semi-structured interviews to obtain qualitative insights on constraints and adaptation. Our analyses revealed that all smallholders are increasingly vulnerable to climate change which projections reveal will result in more intense and extreme weather events. Specifically, 92% of respondents reported reductions in household income, and 63% indicated the necessity to cut household expenses, which negatively affect agricultural productivity, as evidenced by 33% of respondents reporting declining crop yields and 10% experiencing food shortages. We also uncovered significant differences in farming strategies to mitigate vulnerability among distinct household clusters. Some households prioritise maximising yields through high-expense production strategies, while others focus on optimising inputs to enhance profit-margins, indirectly minimising their environmental impact. These varying strategies have different implications for poverty, food security, and the environment, but were doing very little to mitigate overall vulnerability. To enhance the adaptive capacity of smallholders, policies should target interventions that balance economic growth with environmental sustainability, tailored to the specific needs of different farmer and household types. Promoting the adoption of climate-resilient agricultural practices, investing in water management infrastructure, enhancing access to timely and accurate climate information, and implementing social protection measures are strongly recommended.

2.
Environ Sci Technol ; 57(4): 1837-1847, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36594827

RESUMEN

Biochar amendments add persistent organic carbon to soil and can stabilize rhizodeposits and existing soil organic carbon (SOC), but effects of biochar on subsoil carbon stocks have been overlooked. We quantified changes in soil inorganic carbon (SIC) and SOC to 2 m depth 10 years after biochar application to calcareous soil. The total soil carbon (i.e., existing SOC, SIC, and biochar-C) increased by 71, 182, and 210% for B30, B60, and B90, respectively. Biochar application at 30, 60, and 90 t ha-1 rates significantly increased SIC by 10, 38, and 68 t ha-1, respectively, with accumulation mainly occurring in the subsoil (below 1 m). This huge increase of SIC (mainly CaCO3) is ∼100 times larger than the inorganic carbon present in the added biochar (0.3, 0.6, or 0.9 t ha-1). The benzene polycarboxylic acid method showed that the biochar-amended soil contained more black carbon particles (6.8 times higher than control soil) in the depth of 1.4-1.6 m, which provided the direct quantitative evidence for biochar migration into subsoil after a decade. Spectral and energy spectrum analysis also showed an obvious biochar structure in the biochar-amended subsoil, accompanied by a Ca/Mg carbonate cluster, which provided further evidence for downward migration of biochar after a decade. To explain SIC accumulation in subsoil with biochar amendment, the interacting mechanisms are proposed: (1) biochar amendment significantly increases subsoil pH (0.3-0.5 units) 10 years after biochar application, thus forming a favorable pH environment in the subsoil to precipitate HCO3-; and (2) the transported biochar in subsoil can act as nuclei to precipitate SIC. Biochar amendment enhanced SIC by up to 80%; thus, the effects on carbon stocks in subsoil must be understood to inform strategies for carbon dioxide removal through biochar application. Our study provided critical knowledge on the impact of biochar application to topsoil on carbon stocks in subsoil in the long term.


Asunto(s)
Carbono , Suelo , Suelo/química , Secuestro de Carbono , Carbón Orgánico
4.
J Environ Manage ; 302(Pt A): 113964, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34678538

RESUMEN

Reforestation is identified as one of the key nature-based solutions to deliver carbon dioxide removal, which will be required to achieve the net zero ambition of the Paris Agreement. However, the potential for sequestration through reforestation is uncertain because climate change is expected to affect the drivers of forest growth. This study used the process-based 3-PG model to investigate the effects of climate change on development of above-ground biomass (AGB), as an indicator of forest growth, in regenerating native forests in southeast Australia. We investigated how changing climate affects AGB, by combining historical data and future climate projections based on 25 global climate models (GCMs) for the Coupled Model Intercomparison Project Phase 6 (CMIP6) under two Shared Socioeconomic Pathways. We found that the ensemble means of 25 GCMs indicated an increase in temperature with large variations in projected rainfall. When these changes were applied in 3-PG, we found an increase in the simulated AGB by as much as 25% under a moderate emission scenario. This estimate rose to 51% under a high emission scenario by the end of the 21st century across nine selected sites in southeast Australia. However, when CO2 response was excluded, we found a large decrease in AGB at the nine sites. Our modelling results showed that the modelled response to elevated atmospheric CO2 (the CO2 fertilization effect) was largely responsible for the simulated increase of AGB (%). We found that the estimates of future changes in the AGB were subject to uncertainties originating from climate projections, future emission scenarios, and the assumed response to CO2 fertilization. Such modelling simulation improves understanding of possible climate change impacts on forest growth and the inherent uncertainties in estimating mitigation potential through reforestation, with implications for climate policy in Australia.


Asunto(s)
Secuestro de Carbono , Modelos Climáticos , Biomasa , Cambio Climático , Bosques
5.
Glob Chang Biol ; 27(22): 5726-5761, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34314548

RESUMEN

Livestock have long been integral to food production systems, often not by choice but by need. While our knowledge of livestock greenhouse gas (GHG) emissions mitigation has evolved, the prevailing focus has been-somewhat myopically-on technology applications associated with mitigation. Here, we (1) examine the global distribution of livestock GHG emissions, (2) explore social, economic and environmental co-benefits and trade-offs associated with mitigation interventions and (3) critique approaches for quantifying GHG emissions. This review uncovered many insights. First, while GHG emissions from ruminant livestock are greatest in low- and middle-income countries (LMIC; globally, 66% of emissions are produced by Latin America and the Caribbean, East and southeast Asia and south Asia), the majority of mitigation strategies are designed for developed countries. This serious concern is heightened by the fact that 80% of growth in global meat production over the next decade will occur in LMIC. Second, few studies concurrently assess social, economic and environmental aspects of mitigation. Of the 54 interventions reviewed, only 16 had triple-bottom line benefit with medium-high mitigation potential. Third, while efforts designed to stimulate the adoption of strategies allowing both emissions reduction (ER) and carbon sequestration (CS) would achieve the greatest net emissions mitigation, CS measures have greater potential mitigation and co-benefits. The scientific community must shift attention away from the prevailing myopic lens on carbon, towards more holistic, systems-based, multi-metric approaches that carefully consider the raison d'être for livestock systems. Consequential life cycle assessments and systems-aligned 'socio-economic planetary boundaries' offer useful starting points that may uncover leverage points and cross-scale emergent properties. The derivation of harmonized, globally reconciled sustainability metrics requires iterative dialogue between stakeholders at all levels. Greater emphasis on the simultaneous characterization of multiple sustainability dimensions would help avoid situations where progress made in one area causes maladaptive outcomes in other areas.


Asunto(s)
Gases de Efecto Invernadero , Miopía , Animales , Carbono , Efecto Invernadero , Gases de Efecto Invernadero/análisis , Ganado
6.
Philos Trans A Math Phys Eng Sci ; 379(2210): 20200452, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34565223

RESUMEN

Agriculture is the largest single source of global anthropogenic methane (CH4) emissions, with ruminants the dominant contributor. Livestock CH4 emissions are projected to grow another 30% by 2050 under current policies, yet few countries have set targets or are implementing policies to reduce emissions in absolute terms. The reason for this limited ambition may be linked not only to the underpinning role of livestock for nutrition and livelihoods in many countries but also diverging perspectives on the importance of mitigating these emissions, given the short atmospheric lifetime of CH4. Here, we show that in mitigation pathways that limit warming to 1.5°C, which include cost-effective reductions from all emission sources, the contribution of future livestock CH4 emissions to global warming in 2050 is about one-third of that from future net carbon dioxide emissions. Future livestock CH4 emissions, therefore, significantly constrain the remaining carbon budget and the ability to meet stringent temperature limits. We review options to address livestock CH4 emissions through more efficient production, technological advances and demand-side changes, and their interactions with land-based carbon sequestration. We conclude that bringing livestock into mainstream mitigation policies, while recognizing their unique social, cultural and economic roles, would make an important contribution towards reaching the temperature goal of the Paris Agreement and is vital for a limit of 1.5°C. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 1)'.

7.
Glob Chang Biol ; 26(3): 1532-1575, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31637793

RESUMEN

There is a clear need for transformative change in the land management and food production sectors to address the global land challenges of climate change mitigation, climate change adaptation, combatting land degradation and desertification, and delivering food security (referred to hereafter as "land challenges"). We assess the potential for 40 practices to address these land challenges and find that: Nine options deliver medium to large benefits for all four land challenges. A further two options have no global estimates for adaptation, but have medium to large benefits for all other land challenges. Five options have large mitigation potential (>3 Gt CO2 eq/year) without adverse impacts on the other land challenges. Five options have moderate mitigation potential, with no adverse impacts on the other land challenges. Sixteen practices have large adaptation potential (>25 million people benefit), without adverse side effects on other land challenges. Most practices can be applied without competing for available land. However, seven options could result in competition for land. A large number of practices do not require dedicated land, including several land management options, all value chain options, and all risk management options. Four options could greatly increase competition for land if applied at a large scale, though the impact is scale and context specific, highlighting the need for safeguards to ensure that expansion of land for mitigation does not impact natural systems and food security. A number of practices, such as increased food productivity, dietary change and reduced food loss and waste, can reduce demand for land conversion, thereby potentially freeing-up land and creating opportunities for enhanced implementation of other practices, making them important components of portfolios of practices to address the combined land challenges.


Asunto(s)
Agricultura , Cambio Climático , Aclimatación , Conservación de los Recursos Naturales , Abastecimiento de Alimentos
8.
J Environ Manage ; 195(Pt 1): 16-24, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27825772

RESUMEN

The paper explores the background and scientific basis of Land Degradation Neutrality (LDN), a new paradigm reflecting the inter-related aspirations and demands of land-related sustainable development goals. The paper draws on academic literature, field observations, insight from development researchers and practitioners, professional meetings, and agency reports to describe the LDN concept and its relationship with sustainable land management (SLM). We discuss the potential for LDN to facilitate the adoption and assessment of SLM, and to provide a framework to achieve the "land degradation neutral world" goal of the Sustainable Development Agenda 2030. We present insights relevant to the implementation of LDN. These include the need to: consider quality as well as quantity of land degraded and restored; apply an ecosystem-based approach for LDN assessment; consider land degradation risks; recognize different uses of land and approaches to reach the LDN target; and define the LDN baseline and indicators. We discuss the contradictions of using two different modes for evaluating land degradation and successes in land restoration, which we name the "Anti-degradation view" and "Production-advocacy view". To harmonize these approaches we propose that LDN be considered as a phenomenon of equilibrium of the land system, in terms of the balance between deterioration and improvement of terrestrial ecosystems' qualities, functions and services. Indicators to reflect this balance can use different approaches relevant to the various countries and areas, and to the types of land use. Two examples of using this approach are described. The first shows the assessment of the state of LDN based on the homeostasis of land cover and is based on assessment of distribution of ecosystems, and the dynamics of the land cover pattern in the areas prone to land degradation. The second is based on the combination of the well-known principle of Leibig's Law of the Minimum (1843), and Shelford's Law of Tolerance (1911), and focuses on the balance of the components as the major determinant of a sustainable system. Both approaches are illustrated using schematic diagrams to represent different balanced or destabilized situations. We conclude that the comprehensive assessment of the components of land systems and their mutual equilibrium, which determine the potential for sustainable functioning, therefore can be a basis for the development and selection of the most appropriate indicators and measures of LDN at global, regional and local levels, and that LDN could serve as a target and indicator of SLM. Nevertheless, LDN as a phenomenon of equilibrium of the land system needs further scientific research, and development of effective methods to measure the balance between different terrestrial ecosystems' qualities, functions and services.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Humanos , Condiciones Sociales
9.
J Environ Manage ; 182: 238-246, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27479240

RESUMEN

While climate change is confirmed to have serious impacts on agricultural production in many regions worldwide, researchers have proposed various measures that farmers can apply to cope with and adapt to those changes. However, it is often the case that not every adaptation measure would be practical and adoptable in a specific region. Farmers may have their own ways of managing and adapting to climate change that need to be taken into account when considering interventions. This study aimed to engage with farmers to: (1) better understand small-holder knowledge, attitudes and practices in relation to perceived or expected climate change; and (2) document cropping practices, climate change perceptions, constraints to crop production, and coping and adaptation options with existing climate variability and expected climate change. This study was conducted in 2015 in Sala Krau village near Pailin (12°52'N, 102°45'E) and Samlout (12°39'N, 102°36'E) of North-West Cambodia. The methods used were a combination of focus group discussions and one-on-one interviews where 132 farming households were randomly selected. We found that farmers were conscious of changes in climate over recent years, and had a good understanding of likely future changes. While farmers are aware of some practices that can be modified to minimize risk and cope with anticipated changes, they are reluctant to apply them. Furthermore; there are no government agricultural extension services provided at the village level and farmers have relied on each other and other actors in the value chain network for information to support their decision-making. There is a lack of knowledge of the principles of conservation agriculture that urgently require agricultural extension services in the region to build farmer ability to better cope and adapt to climate change.


Asunto(s)
Agricultura/métodos , Cambio Climático , Granjas , Cambodia , Productos Agrícolas , Toma de Decisiones , Ambiente , Grupos Focales , Factores Socioeconómicos , Suelo/química
10.
Environ Sci Technol ; 46(21): 11770-8, 2012 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-23013285

RESUMEN

The stability of biochar carbon (C) is the major determinant of its value for long-term C sequestration in soil. A long-term (5 year) laboratory experiment was conducted under controlled conditions using 11 biochars made from five C3 biomass feedstocks (Eucalyptus saligna wood and leaves, papermill sludge, poultry litter, cow manure) at 400 and/or 550 °C. The biochars were incubated in a vertisol containing organic C from a predominantly C4-vegetation source, and total CO(2)-C and associated δ(13)C were periodically measured. Between 0.5% and 8.9% of the biochar C was mineralized over 5 years. The C in manure-based biochars mineralized faster than that in plant-based biochars, and C in 400 °C biochars mineralized faster than that in corresponding 550 °C biochars. The estimated mean residence time (MRT) of C in biochars varied between 90 and 1600 years. These are conservative estimates because they represent MRT of relatively labile and intermediate-stability biochar C components. Furthermore, biochar C MRT is likely to be higher under field conditions of lower moisture, lower temperatures or nutrient availability constraints. Strong relationships of biochar C stability with the initial proportion of nonaromatic C and degree of aromatic C condensation in biochar support the use of these properties to predict biochar C stability in soil.


Asunto(s)
Carbono/análisis , Suelo/análisis , Silicatos de Aluminio , Animales , Bovinos , Arcilla , Eucalyptus , Residuos Industriales , Estiércol , Papel , Hojas de la Planta , Aves de Corral , Temperatura , Madera
11.
Sci Bull (Beijing) ; 67(6): 655-664, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36546127

RESUMEN

In Australia, the proportion of forest area that burns in a typical fire season is less than for other vegetation types. However, the 2019-2020 austral spring-summer was an exception, with over four times the previous maximum area burnt in southeast Australian temperate forests. Temperate forest fires have extensive socio-economic, human health, greenhouse gas emissions, and biodiversity impacts due to high fire intensities. A robust model that identifies driving factors of forest fires and relates impact thresholds to fire activity at regional scales would help land managers and fire-fighting agencies prepare for potentially hazardous fire in Australia. Here, we developed a machine-learning diagnostic model to quantify nonlinear relationships between monthly burnt area and biophysical factors in southeast Australian forests for 2001-2020 on a 0.25° grid based on several biophysical parameters, notably fire weather and vegetation productivity. Our model explained over 80% of the variation in the burnt area. We identified that burnt area dynamics in southeast Australian forest were primarily controlled by extreme fire weather, which mainly linked to fluctuations in the Southern Annular Mode (SAM) and Indian Ocean Dipole (IOD), with a relatively smaller contribution from the central Pacific El Niño Southern Oscillation (ENSO). Our fire diagnostic model and the non-linear relationships between burnt area and environmental covariates can provide useful guidance to decision-makers who manage preparations for an upcoming fire season, and model developers working on improved early warning systems for forest fires.


Asunto(s)
Incendios , Incendios Forestales , Humanos , Australia , Tiempo (Meteorología) , Bosques
12.
Nat Commun ; 13(1): 5177, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056025

RESUMEN

The soil carbon (C) saturation concept suggests an upper limit to the storage of soil organic carbon (SOC). It is set by the mechanisms that protect soil organic matter from mineralization. Biochar has the capacity to protect new C, including rhizodeposits and microbial necromass. However, the decadal-scale mechanisms by which biochar influences the molecular diversity, spatial heterogeneity, and temporal changes in SOC persistence, remain unresolved. Here we show that the soil C storage ceiling of a Ferralsol under subtropical pasture was raised by a second application of Eucalyptus saligna biochar 8.2 years after the first application-the first application raised the soil C storage ceiling by 9.3 Mg new C ha-1 and the second application raised this by another 2.3 Mg new C ha-1. Linking direct visual evidence from one-, two-, and three-dimensional analyses with SOC quantification, we found high spatial heterogeneity of C functional groups that resulted in the retention of rhizodeposits and microbial necromass in microaggregates (53-250 µm) and the mineral fraction (<53 µm). Microbial C-use efficiency was concomitantly increased by lowering specific enzyme activities, contributing to the decreased mineralization of native SOC by 18%. We suggest that the SOC ceiling can be lifted using biochar in (sub)tropical grasslands globally.


Asunto(s)
Carbono , Suelo , Secuestro de Carbono , Carbón Orgánico/química , Suelo/química , Microbiología del Suelo
13.
Anim Nutr ; 7(4): 1219-1230, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34754963

RESUMEN

Increasingly countries are seeking to reduce emission of greenhouse gases from the agricultural industries, and livestock production in particular, as part of their climate change management. While many reviews update progress in mitigation research, a quantitative assessment of the efficacy and performance-consequences of nutritional strategies to mitigate enteric methane (CH4) emissions from ruminants has been lacking. A meta-analysis was conducted based on 108 refereed papers from recent animal studies (2000-2020) to report effects on CH4 production, CH4 yield and CH4 emission intensity from 8 dietary interventions. The interventions (oils, microalgae, nitrate, ionophores, protozoal control, phytochemicals, essential oils and 3-nitrooxypropanol). Of these, macroalgae and 3-nitrooxypropanol showed greatest efficacy in reducing CH4 yield (g CH4/kg of dry matter intake) at the doses trialled. The confidence intervals derived for the mitigation efficacies could be applied to estimate the potential to reduce national livestock emissions through the implementation of these dietary interventions.

14.
Sci Total Environ ; 770: 145278, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-33736413

RESUMEN

Woody plant encroachment in agricultural areas reduces agricultural production and is a recognised land degradation problem of global significance. Invasive native scrub (INS) is woody vegetation that invades southern Australian rangelands and is commonly cleared to return land to agricultural production. Clearing of INS emits carbon to the atmosphere, and the retention of INS by landholders for the purpose of avoiding carbon emissions has been incentivized in Australia as an emission reduction strategy. Retaining INS, however, means land remains relatively unproductive because INS negatively impacts livestock production. This desktop study examined whether clearing INS to return an area to production, and pyrolysing residues to produce biochar, has the potential to provide climate change mitigation (the "pyrolysis scenario"). The syngas produced via pyrolysis was assumed to be used to generate electricity that was fed into the electricity grid and avoided the production of electricity from existing sources. In addition, the biochar was assumed to be applied to soils used for wheat production, giving mitigation benefits from reduced N2O emissions from fertiliser use and reduction in the use of lime to ameliorate soil acidity. Relative to clearing INS and burning residues in-situ, the pyrolysis scenario resulted in a reduction in radiative forcing of 1.28 × 10-4 W m2 ha-1 of INS managed, 25 years after clearing, and was greater than the reduction of 1.06 × 10-4 W m2 ha-1 that occurred when INS was retained. The greatest contribution to the climate change mitigation provided by the pyrolysis scenario came from avoided emissions from grid electricity production, while avoided N2O and lime emissions made a relatively minor contribution towards mitigation.


Asunto(s)
Cambio Climático , Pirólisis , Agricultura , Australia , Carbón Orgánico , Óxido Nitroso/análisis , Suelo
15.
J Environ Qual ; 39(4): 1224-35, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20830910

RESUMEN

The influence of biochar on nitrogen (N) transformation processes in soil is not fully understood. This study assessed the influence of four biochars (wood and poultry manure biochars synthesized at 400 degrees C, nonactivated, and at 550 degrees C, activated, abbreviated as: W400, PM400, W550, PM550, respectively) on nitrous oxide (N2O) emission and N leaching from an Alfisol and a Vertisol. Repacked soil columns were subjected to three wetting-drying (W-D) cycles to achieve a range of water-filled pore space (WFPS) over a 5-mo period. During the first two W-D cycles, W400 and W550 had inconsistent effects on N2O emissions and the soils amended with PM400 produced higher N2O emissions relative to the control. The initially greater N2O emission from the PM400 soils was ascribed to its higher labile intrinsic N content than the other biochars. During the third W-D cycle, all biochar treatments consistently decreased N2O emissions, cumulatively by 14 to 73% from the Alfisol and by 23 to 52% from the Vertisol, relative to their controls. In the first leaching event, higher nitrate leaching occurred from the PM400-amended soils compared with the other treatments. In the second event, the leaching of ammonium was reduced by 55 to 93% from the W550- and PM550-Alfisol and Vertisol, and by 87 to 94% from the W400- and PM400-Vertisol only (cf. control). We propose that the increased effectiveness of biochars in reducing N2O emissions and ammonium leaching over time was due to increased sorption capacity of biochars through oxidative reactions on the biochar surfaces with ageing.


Asunto(s)
Carbón Orgánico/química , Nitrógeno/química , Óxido Nitroso/química , Contaminantes del Suelo/química , Suelo/análisis , Contaminantes Atmosféricos/química , Contaminación del Aire/prevención & control , Dióxido de Carbono , Factores de Tiempo , Agua/química , Contaminantes Químicos del Agua/química
16.
Sci Total Environ ; 725: 138260, 2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32298879

RESUMEN

Climate change threatens humanity yet the provision of food that supports humanity is a major source of greenhouse gases, which exacerbates that threatening process. Developing strategies to reduce the emissions associated with key global commodities is essential to mitigate the impacts of climate change. To date, however, there have been no studies that have estimated the potential to reduce GHG emissions associated with the production of wheat, a key global commodity, at a national scale through changes to wheat production systems. Here, we assess the consequences for net GHG emissions of Australian wheat production from applying three changes to wheat production systems: increasing the rates of fertiliser N to achieve the water-limited yield potential; increasing the frequency of lime applications on acid soils; and changing a two year cropping rotation (from wheat-wheat to legume-wheat). We predict that applying these three changes across the key wheat growing regions in Australia would increase production of wheat and legumes by 17.8 and 5.3 Mt, respectively, over the two-year period. Intensifying Australian production would reduce the need to produce wheat and legumes elsewhere in the world. This would free up agricultural land at the global scale and avoid the need to convert forestland and grassland to cropping lands to meet increasing global demands for wheat. We find that applying these changes across wheat growing zones would reduce the GHGs associated with Australian wheat production by 18.4 Mt CO2-e over the two-year period. Our research supports the notion that intensification of existing agricultural production can provide climate change mitigation. The impacts of intensification on other environmental indicators also need to be considered by policy makers.


Asunto(s)
Gases de Efecto Invernadero , Triticum , Agricultura , Australia , Cambio Climático , Efecto Invernadero
17.
Nat Food ; 1(11): 720-728, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37128032

RESUMEN

Understanding sources of uncertainty in climate-crop modelling is critical for informing adaptation strategies for cropping systems. An understanding of the major sources of uncertainty in yield change is needed to develop strategies to reduce the total uncertainty. Here, we simulated rain-fed wheat cropping at four representative locations in China and Australia using eight crop models, 32 global climate models (GCMs) and two climate downscaling methods, to investigate sources of uncertainty in yield response to climate change. We partitioned the total uncertainty into sources caused by GCMs, crop models, climate scenarios and the interactions between these three. Generally, the contributions to uncertainty were broadly similar in the two downscaling methods. The dominant source of uncertainty is GCMs in Australia, whereas in China it is crop models. This difference is largely due to uncertainty in GCM-projected future rainfall change across locations. Our findings highlight the site-specific sources of uncertainty, which should be one step towards understanding uncertainties for more robust climate-crop modelling.

18.
Waste Manag ; 85: 341-350, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30803589

RESUMEN

Approximately 1.5 million tonnes (Mt) of wood waste are disposed of in Australian landfills annually. Recent studies have suggested that anaerobic decay levels of wood in landfills are low, although knowledge of the decay of individual wood species is limited. The objective of this study was to establish the extent of carbon loss for wood species of commercial importance in Australia including radiata pine, blackbutt, spotted gum and mountain ash. Experiments were conducted under laboratory conditions designed to simulate optimal anaerobic biodegradation in a landfill. Bacterial degradation, identified by both light microscopy and electron microscopy, occurred to a varying degree in mountain ash and spotted gum wood. Fungal decay was not observed in any wood samples. Mountain ash, the species with the highest methane yield (20.9 mL CH4/g) also had the highest holocellulose content and the lowest acid-insoluble lignin and extractive content. As the decay levels for untreated radiata pine were very low, it was not possible to determine whether impregnation of radiata pine with chemical preservatives had any impact on decay. Carbon losses estimated from gas generation were below 5% for all species tested. Carbon losses as estimated by gas generation were lower than those derived by mass balance in most reactors, suggesting that mass loss does not necessarily equate to carbon emissions. There was no statistical difference between decay of blackbutt derived from plantation and older, natural forests. Addition of paper as an easily digestible feedstock did not increase carbon loss for the two wood species tested and the presence of radiata pine had an inhibitory effect on copy paper decay. Although differences between some of the wood types were found to be statistically significant, these differences were detected for wood with carbon losses that did not exceed 5%. The suggested factor for carbon loss for wood in landfills in Australia is 1.4%. This study confirms that disposal of wood in landfills in Australia results in long-term storage of carbon, with only minimal conversion of carbon to gaseous end products.


Asunto(s)
Eliminación de Residuos , Madera , Australia , Carbono , Metano , Instalaciones de Eliminación de Residuos
19.
Nat Food ; 4(3): 203-204, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-37118269
20.
Nat Food ; 4(3): 268, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37118280
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA