Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nat Methods ; 18(2): 156-164, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33542514

RESUMEN

This paper describes outcomes of the 2019 Cryo-EM Model Challenge. The goals were to (1) assess the quality of models that can be produced from cryogenic electron microscopy (cryo-EM) maps using current modeling software, (2) evaluate reproducibility of modeling results from different software developers and users and (3) compare performance of current metrics used for model evaluation, particularly Fit-to-Map metrics, with focus on near-atomic resolution. Our findings demonstrate the relatively high accuracy and reproducibility of cryo-EM models derived by 13 participating teams from four benchmark maps, including three forming a resolution series (1.8 to 3.1 Å). The results permit specific recommendations to be made about validating near-atomic cryo-EM structures both in the context of individual experiments and structure data archives such as the Protein Data Bank. We recommend the adoption of multiple scoring parameters to provide full and objective annotation and assessment of the model, reflective of the observed cryo-EM map density.


Asunto(s)
Microscopía por Crioelectrón/métodos , Modelos Moleculares , Cristalografía por Rayos X , Conformación Proteica , Proteínas/química
2.
Res Sq ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38343795

RESUMEN

The EMDataResource Ligand Model Challenge aimed to assess the reliability and reproducibility of modeling ligands bound to protein and protein/nucleic-acid complexes in cryogenic electron microscopy (cryo-EM) maps determined at near-atomic (1.9-2.5 Å) resolution. Three published maps were selected as targets: E. coli beta-galactosidase with inhibitor, SARS-CoV-2 RNA-dependent RNA polymerase with covalently bound nucleotide analog, and SARS-CoV-2 ion channel ORF3a with bound lipid. Sixty-one models were submitted from 17 independent research groups, each with supporting workflow details. We found that (1) the quality of submitted ligand models and surrounding atoms varied, as judged by visual inspection and quantification of local map quality, model-to-map fit, geometry, energetics, and contact scores, and (2) a composite rather than a single score was needed to assess macromolecule+ligand model quality. These observations lead us to recommend best practices for assessing cryo-EM structures of liganded macromolecules reported at near-atomic resolution.

3.
Acta Crystallogr D Struct Biol ; 79(Pt 4): 326-338, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36974965

RESUMEN

Tracing the backbone is a critical step in protein model building, as incorrect tracing leads to poor protein models. Here, a neural network trained to identify unfavourable fragments and remove them from the model-building process in order to improve backbone tracing is presented. Moreover, a decision tree was trained to select an optimal threshold to eliminate unfavourable fragments. The neural network was tested on experimental phasing data sets from the Joint Center for Structural Genomics (JCSG), recently deposited experimental phasing data sets (from 2015 to 2021) and molecular-replacement data sets. The experimental results show that using the neural network in the Buccaneer protein-model-building software can produce significantly more complete protein models than those built using Buccaneer alone. In particular, Buccaneer with the neural network built protein models with a completeness that was at least 5% higher for 25% and 50% of the original and truncated resolution JCSG experimental phasing data sets, respectively, for 28% of the recently collected experimental phasing data sets and for 43% of the molecular-replacement data sets.


Asunto(s)
Proteínas , Programas Informáticos , Conformación Proteica , Modelos Moleculares , Cristalografía por Rayos X , Proteínas/química , Redes Neurales de la Computación
4.
Acta Crystallogr D Struct Biol ; 79(Pt 6): 449-461, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37259835

RESUMEN

The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces. The CCP4 suite has experienced several considerable changes since its last reference article, involving new infrastructure, original programs and graphical interfaces. This article, which is intended as a general literature citation for the use of the CCP4 software suite in structure determination, will guide the reader through such transformations, offering a general overview of the new features and outlining future developments. As such, it aims to highlight the individual programs that comprise the suite and to provide the latest references to them for perusal by crystallographers around the world.


Asunto(s)
Proteínas , Programas Informáticos , Proteínas/química , Cristalografía por Rayos X , Sustancias Macromoleculares
5.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 4): 328-35, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22505253

RESUMEN

Two developments in the process of automated protein model building in the Buccaneer software are presented. A general-purpose library for protein fragments of arbitrary size is described, with a highly optimized search method allowing the use of a larger database than in previous work. The problem of assembling an autobuilt model into complete chains is discussed. This involves the assembly of disconnected chain fragments into complete molecules and the use of the database of protein fragments in improving the model completeness. Assembly of fragments into molecules is a standard step in existing model-building software, but the methods have not received detailed discussion in the literature.


Asunto(s)
Bases de Datos de Proteínas , Fragmentos de Péptidos/química , Cristalografía por Rayos X , Modelos Moleculares , Estructura Terciaria de Proteína , Programas Informáticos
7.
Nat Chem Biol ; 11(7): 532, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26083072
8.
Sci Am ; 316(4): 12, 2017 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-28296847
9.
Acta Crystallogr D Struct Biol ; 78(Pt 9): 1090-1098, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36048149

RESUMEN

Interactive model building can be a difficult and time-consuming step in the structure-solution process. Automated model-building programs such as Buccaneer often make it quicker and easier by completing most of the model in advance. However, they may fail to do so with low-resolution data or a poor initial model or map. The Buccaneer pipeline is a relatively simple program that iterates Buccaneer with REFMAC to refine the model and update the map. A new pipeline called ModelCraft has been developed that expands on this to include shift-field refinement, machine-learned pruning of incorrect residues, classical density modification, addition of water and dummy atoms, building of nucleic acids and final rebuilding of side chains. Testing was performed on 1180 structures solved by experimental phasing, 1338 structures solved by molecular replacement using homologues and 2030 structures solved by molecular replacement using predicted AlphaFold models. Compared with the previous Buccaneer pipeline, ModelCraft increased the mean completeness of the protein models in the experimental phasing cases from 91% to 95%, the molecular-replacement cases from 50% to 78% and the AlphaFold cases from 82% to 91%.


Asunto(s)
Algoritmos , Programas Informáticos , Cristalografía por Rayos X , Modelos Moleculares , Proteínas/química
10.
Structure ; 30(4): 522-531.e4, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35150604

RESUMEN

Despite the abundance of available software tools, optimal particle selection is still a vital issue in single-particle cryoelectron microscopy (cryo-EM). Regardless of the method used, most pickers struggle when ice thickness varies on a micrograph. IceBreaker allows users to estimate the relative ice gradient and flatten it by equalizing the local contrast. It allows the differentiation of particles from the background and improves overall particle picking performance. Furthermore, we introduce an additional parameter corresponding to local ice thickness for each particle. Particles with a defined ice thickness can be grouped and filtered based on this parameter during processing. These functionalities are especially valuable for on-the-fly processing to automatically pick as many particles as possible from each micrograph and to select optimal regions for data collection. Finally, estimated ice gradient distributions can be stored separately and used to inspect the quality of prepared samples.


Asunto(s)
Hielo , Procesamiento de Imagen Asistido por Computador , Microscopía por Crioelectrón/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen Individual de Molécula , Programas Informáticos
11.
Acta Crystallogr D Struct Biol ; 78(Pt 2): 152-161, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35102881

RESUMEN

Recently, there has been a dramatic improvement in the quality and quantity of data derived using cryogenic electron microscopy (cryo-EM). This is also associated with a large increase in the number of atomic models built. Although the best resolutions that are achievable are improving, often the local resolution is variable, and a significant majority of data are still resolved at resolutions worse than 3 Å. Model building and refinement is often challenging at these resolutions, and hence atomic model validation becomes even more crucial to identify less reliable regions of the model. Here, a graphical user interface for atomic model validation, implemented in the CCP-EM software suite, is presented. It is aimed to develop this into a platform where users can access multiple complementary validation metrics that work across a range of resolutions and obtain a summary of evaluations. Based on the validation estimates from atomic models associated with cryo-EM structures from SARS-CoV-2, it was observed that models typically favor adopting the most common conformations over fitting the observations when compared with the model agreement with data. At low resolutions, the stereochemical quality may be favored over data fit, but care should be taken to ensure that the model agrees with the data in terms of resolvable features. It is demonstrated that further re-refinement can lead to improvement of the agreement with data without the loss of geometric quality. This also highlights the need for improved resolution-dependent weight optimization in model refinement and an effective test for overfitting that would help to guide the refinement process.


Asunto(s)
Microscopía por Crioelectrón/métodos , Validación de Programas de Computación , Programas Informáticos , COVID-19 , Procesamiento de Imagen Asistido por Computador , Modelos Moleculares , Reproducibilidad de los Resultados , Interfaz Usuario-Computador
12.
Acta Crystallogr D Struct Biol ; 78(Pt 9): 1079-1089, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36048148

RESUMEN

Nowadays, progress in the determination of three-dimensional macromolecular structures from diffraction images is achieved partly at the cost of increasing data volumes. This is due to the deployment of modern high-speed, high-resolution detectors, the increased complexity and variety of crystallographic software, the use of extensive databases and high-performance computing. This limits what can be accomplished with personal, offline, computing equipment in terms of both productivity and maintainability. There is also an issue of long-term data maintenance and availability of structure-solution projects as the links between experimental observations and the final results deposited in the PDB. In this article, CCP4 Cloud, a new front-end of the CCP4 software suite, is presented which mitigates these effects by providing an online, cloud-based environment for crystallographic computation. CCP4 Cloud was developed for the efficient delivery of computing power, database services and seamless integration with web resources. It provides a rich graphical user interface that allows project sharing and long-term storage for structure-solution projects, and can be linked to data-producing facilities. The system is distributed with the CCP4 software suite version 7.1 and higher, and an online publicly available instance of CCP4 Cloud is provided by CCP4.


Asunto(s)
Nube Computacional , Programas Informáticos , Cristalografía por Rayos X , Sustancias Macromoleculares/química
13.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 4): 235-42, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21460441

RESUMEN

The CCP4 (Collaborative Computational Project, Number 4) software suite is a collection of programs and associated data and software libraries which can be used for macromolecular structure determination by X-ray crystallography. The suite is designed to be flexible, allowing users a number of methods of achieving their aims. The programs are from a wide variety of sources but are connected by a common infrastructure provided by standard file formats, data objects and graphical interfaces. Structure solution by macromolecular crystallography is becoming increasingly automated and the CCP4 suite includes several automation pipelines. After giving a brief description of the evolution of CCP4 over the last 30 years, an overview of the current suite is given. While detailed descriptions are given in the accompanying articles, here it is shown how the individual programs contribute to a complete software package.


Asunto(s)
Cristalografía por Rayos X/métodos , Proteínas/análisis , Diseño de Software , Automatización de Laboratorios , Conducta Cooperativa , Cristalografía por Rayos X/instrumentación
14.
Acta Crystallogr D Struct Biol ; 77(Pt 12): 1591-1601, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34866614

RESUMEN

Proteins are macromolecules that perform essential biological functions which depend on their three-dimensional structure. Determining this structure involves complex laboratory and computational work. For the computational work, multiple software pipelines have been developed to build models of the protein structure from crystallographic data. Each of these pipelines performs differently depending on the characteristics of the electron-density map received as input. Identifying the best pipeline to use for a protein structure is difficult, as the pipeline performance differs significantly from one protein structure to another. As such, researchers often select pipelines that do not produce the best possible protein models from the available data. Here, a software tool is introduced which predicts key quality measures of the protein structures that a range of pipelines would generate if supplied with a given crystallographic data set. These measures are crystallographic quality-of-fit indicators based on included and withheld observations, and structure completeness. Extensive experiments carried out using over 2500 data sets show that the tool yields accurate predictions for both experimental phasing data sets (at resolutions between 1.2 and 4.0 Å) and molecular-replacement data sets (at resolutions between 1.0 and 3.5 Å). The tool can therefore provide a recommendation to the user concerning the pipelines that should be run in order to proceed most efficiently to a depositable model.


Asunto(s)
Cristalografía por Rayos X/métodos , Conformación Proteica , Automatización , Proteínas/química , Programas Informáticos
15.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 4): 470-8, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20383000

RESUMEN

Classical density-modification techniques (as opposed to statistical approaches) offer a computationally cheap method for improving phase estimates in order to provide a good electron-density map for model building. The rise of statistical methods has lead to a shift in focus away from the classical approaches; as a result, some recent developments have not made their way into classical density-modification software. This paper describes the application of some recent techniques, including most importantly the use of prior phase information in the likelihood estimation of phase errors within a classical density-modification framework. The resulting software gives significantly better results than comparable classical methods, while remaining nearly two orders of magnitude faster than statistical methods.


Asunto(s)
Cristalografía por Rayos X/métodos , Diseño de Software , Anisotropía , Simulación por Computador
16.
Acta Crystallogr D Struct Biol ; 76(Pt 9): 814-823, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32876057

RESUMEN

For the last two decades, researchers have worked independently to automate protein model building, and four widely used software pipelines have been developed for this purpose: ARP/wARP, Buccaneer, Phenix AutoBuild and SHELXE. Here, the usefulness of combining these pipelines to improve the built protein structures by running them in pairwise combinations is examined. The results show that integrating these pipelines can lead to significant improvements in structure completeness and Rfree. In particular, running Phenix AutoBuild after Buccaneer improved structure completeness for 29% and 75% of the data sets that were examined at the original resolution and at a simulated lower resolution, respectively, compared with running Phenix AutoBuild on its own. In contrast, Phenix AutoBuild alone produced better structure completeness than the two pipelines combined for only 7% and 3% of these data sets.


Asunto(s)
Proteínas/química , Programas Informáticos , Modelos Moleculares , Conformación Proteica
17.
Acta Crystallogr D Struct Biol ; 76(Pt 6): 531-541, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32496215

RESUMEN

This work focuses on the use of the existing protein-model-building software Buccaneer to provide structural interpretation of electron cryo-microscopy (cryo-EM) maps. Originally developed for application to X-ray crystallography, the necessary steps to optimise the usage of Buccaneer with cryo-EM maps are shown. This approach has been applied to the data sets of 208 cryo-EM maps with resolutions of better than 4 Å. The results obtained also show an evident improvement in the sequencing step when the initial reference map and model used for crystallographic cases are replaced by a cryo-EM reference. All other necessary changes to settings in Buccaneer are implemented in the model-building pipeline from within the CCP-EM interface (as of version 1.4.0).


Asunto(s)
Microscopía por Crioelectrón/métodos , Proteínas/química , Programas Informáticos , Modelos Moleculares , Conformación Proteica
18.
Acta Crystallogr D Struct Biol ; 76(Pt 8): 713-723, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32744253

RESUMEN

Manually identifying and correcting errors in protein models can be a slow process, but improvements in validation tools and automated model-building software can contribute to reducing this burden. This article presents a new correctness score that is produced by combining multiple sources of information using a neural network. The residues in 639 automatically built models were marked as correct or incorrect by comparing them with the coordinates deposited in the PDB. A number of features were also calculated for each residue using Coot, including map-to-model correlation, density values, B factors, clashes, Ramachandran scores, rotamer scores and resolution. Two neural networks were created using these features as inputs: one to predict the correctness of main-chain atoms and the other for side chains. The 639 structures were split into 511 that were used to train the neural networks and 128 that were used to test performance. The predicted correctness scores could correctly categorize 92.3% of the main-chain atoms and 87.6% of the side chains. A Coot ML Correctness script was written to display the scores in a graphical user interface as well as for the automatic pruning of chains, residues and side chains with low scores. The automatic pruning function was added to the CCP4i2 Buccaneer automated model-building pipeline, leading to significant improvements, especially for high-resolution structures.


Asunto(s)
Aprendizaje Automático , Modelos Moleculares , Conformación Proteica , Proteínas/química , Programas Informáticos , Cristalografía por Rayos X
19.
Acta Crystallogr D Struct Biol ; 75(Pt 12): 1119-1128, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31793905

RESUMEN

A comparison of four protein model-building pipelines (ARP/wARP, Buccaneer, PHENIX AutoBuild and SHELXE) was performed using data sets from 202 experimentally phased cases, both with the data as observed and truncated to simulate lower resolutions. All pipelines were run using default parameters. Additionally, an ARP/wARP run was completed using models from Buccaneer. All pipelines achieved nearly complete protein structures and low Rwork/Rfree at resolutions between 1.2 and 1.9 Å, with PHENIX AutoBuild and ARP/wARP producing slightly lower R factors. At lower resolutions, Buccaneer leads to significantly more complete models.


Asunto(s)
Cristalografía por Rayos X/métodos , Modelos Moleculares , Proteínas/química , Programas Informáticos , Algoritmos , Bases de Datos de Proteínas , Conjuntos de Datos como Asunto , Conformación Proteica
20.
Acta Crystallogr D Struct Biol ; 74(Pt 2): 125-131, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29533238

RESUMEN

Refinement is a critical step in the determination of a model which explains the crystallographic observations and thus best accounts for the missing phase components. The scattering density is usually described in terms of atomic parameters; however, in macromolecular crystallography the resolution of the data is generally insufficient to determine the values of these parameters for individual atoms. Stereochemical and geometric restraints are used to provide additional information, but produce interrelationships between parameters which slow convergence, resulting in longer refinement times. An alternative approach is proposed in which parameters are not attached to atoms, but to regions of the electron-density map. These parameters can move the density or change the local temperature factor to better explain the structure factors. Varying the size of the region which determines the parameters at a particular position in the map allows the method to be applied at different resolutions without the use of restraints. Potential applications include initial refinement of molecular-replacement models with domain motions, and potentially the use of electron density from other sources such as electron cryo-microscopy (cryo-EM) as the refinement model.


Asunto(s)
Cristalografía por Rayos X/métodos , Sustancias Macromoleculares/química , Modelos Moleculares , Electrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA