Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
EMBO J ; 41(2): e106837, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34873731

RESUMEN

Mitochondria depend on the import of phospholipid precursors for the biosynthesis of phosphatidylethanolamine (PE) and cardiolipin, yet the mechanism of their transport remains elusive. A dynamic lipidomics approach revealed that mitochondria preferentially import di-unsaturated phosphatidylserine (PS) for subsequent conversion to PE by the mitochondrial PS decarboxylase Psd1p. Several protein complexes tethering mitochondria to the endomembrane system have been implicated in lipid transport in yeast, including the endoplasmic reticulum (ER)-mitochondrial encounter structure (ERMES), ER-membrane complex (EMC), and the vacuole and mitochondria patch (vCLAMP). By limiting the availability of unsaturated phospholipids, we created conditions to investigate the mechanism of lipid transfer and the contributions of the tethering complexes in vivo. Under these conditions, inactivation of ERMES components or of the vCLAMP component Vps39p exacerbated accumulation of saturated lipid acyl chains, indicating that ERMES and Vps39p contribute to the mitochondrial sink for unsaturated acyl chains by mediating transfer of di-unsaturated phospholipids. These results support the concept that intermembrane lipid flow is rate-limited by molecular species-dependent lipid efflux from the donor membrane and driven by the lipid species' concentration gradient between donor and acceptor membrane.


Asunto(s)
Mitocondrias/metabolismo , Fosfolípidos/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Transporte Biológico , Carboxiliasas/genética , Carboxiliasas/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Eur Biophys J ; 46(1): 91-101, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27815573

RESUMEN

A promising tool in membrane research is the use of the styrene-maleic acid (SMA) copolymer to solubilize membranes in the form of nanodiscs. Since membranes are heterogeneous in composition, it is important to know whether SMA thereby has a preference for solubilization of either specific types of lipids or specific bilayer phases. Here, we investigated this by performing partial solubilization of model membranes and analyzing the lipid composition of the solubilized fraction. We found that SMA displays no significant lipid preference in homogeneous binary lipid mixtures in the fluid phase, even when using lipids that by themselves show very different solubilization kinetics. By contrast, in heterogeneous phase-separated bilayers, SMA was found to have a strong preference for solubilization of lipids in the fluid phase as compared to those in either a gel phase or a liquid-ordered phase. Together the results suggest that (1) SMA is a reliable tool to characterize native interactions between membrane constituents, (2) any solubilization preference of SMA is not due to properties of individual lipids but rather due to properties of the membrane or membrane domains in which these lipids reside and (3) exploiting SMA resistance rather than detergent resistance may be an attractive approach for the isolation of ordered domains from biological membranes.


Asunto(s)
Membrana Dobles de Lípidos/química , Maleatos/química , Poliestirenos/química , Membrana Celular/química , Solubilidad
3.
EMBO Rep ; 14(5): 434-40, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23519169

RESUMEN

Synthesis of phospholipids, sterols and sphingolipids is thought to occur at contact sites between the endoplasmic reticulum (ER) and other organelles because many lipid-synthesizing enzymes are enriched in these contacts. In only a few cases have the enzymes been localized to contacts in vivo and in no instances have the contacts been demonstrated to be required for enzyme function. Here, we show that plasma membrane (PM)--ER contact sites in yeast are required for phosphatidylcholine synthesis and regulate the activity of the phosphatidylethanolamine N-methyltransferase enzyme, Opi3. Opi3 activity requires Osh3, which localizes to PM-ER contacts where it might facilitate in trans catalysis by Opi3. Thus, membrane contact sites provide a structural mechanism to regulate lipid synthesis.


Asunto(s)
Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Fosfatidilcolinas/biosíntesis , Saccharomyces cerevisiae/metabolismo , Membrana Celular/ultraestructura , Retículo Endoplásmico/ultraestructura , Técnicas de Inactivación de Genes , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosfatidato Fosfatasa/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Biochim Biophys Acta ; 1831(6): 1167-76, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23501167

RESUMEN

In the yeast Saccharomyces cerevisiae, the molecular species profile of the major membrane glycerophospholipid phosphatidylcholine (PC) is determined by the molecular species-selectivity of the biosynthesis routes and by acyl chain remodeling. Overexpression of the glycerol-3-phosphate acyltransferase Sct1p was recently shown to induce a strong increase in the cellular content of palmitate (C16:0). Using stable isotope labeling and mass spectrometry, the present study shows that wild type yeast overexpressing Sct1p incorporates excess C16:0 into PC via the methylation of PE, the CDP-choline route, and post-synthetic acyl chain remodeling. Overexpression of Sct1p increased the extent of remodeling of PE-derived PC, providing a novel tool to perform mechanistic studies on PC acyl chain exchange. The exchange of acyl chains occurred at both the sn-1 and sn-2 positions of the glycerol backbone of PC, and required the phospholipase B Plb1p for optimal efficiency. Sct1p-catalyzed acyl chain exchange, the acyl-CoA binding protein Acb1p, the Plb1p homologue Plb2p, and the glycerophospholipid:triacylglycerol transacylase Lro1p were not required for PC remodeling. The results indicate that PC serves as a buffer for excess cellular C16:0.


Asunto(s)
Proteínas Portadoras/metabolismo , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Lisofosfolipasa/metabolismo , Proteínas de la Membrana/metabolismo , Palmitatos/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fosfolipasas A2/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Espectrometría de Masa por Ionización de Electrospray
5.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(4): 159467, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38382574

RESUMEN

Gram-negative bacteria possess an asymmetric outer membrane (OM) primarily composed of lipopolysaccharides (LPS) on the outer leaflet and phospholipids on the inner leaflet. The outer membrane functions as an effective permeability barrier to compounds such as antibiotics. Studying LPS biosynthesis is therefore helpful to explore novel strategies for new antibiotic development. Metabolic glycan labeling of the bacterial surface has emerged as a powerful method to investigate LPS biosynthesis. However, the previously reported methods of labeling LPS are based on radioactivity or difficult-to-produce analogs of bacterial sugars. In this study, we report on the incorporation of azido galactose into the LPS of the Gram-negative bacteria Escherichia coli and Salmonella typhi via metabolic labeling. As a common sugar analog, azido galactose successfully labeled both O-antigen and core of Salmonella LPS, but not E. coli LPS. This labeling of Salmonella LPS, as shown by SDS-PAGE analysis and fluorescence microscopy, differs from the previously reported labeling of either O-antigen or core of LPS. Our findings are useful for studying LPS biogenesis pathways in Gram-negative bacteria like Salmonella. In addition, our approach is helpful for screening for agents that target LPS biosynthesis as it allows for the detection of newly synthesized LPS that appears in the OM. Furthermore, this approach may also aid in isolating chemically modified LPS for vaccine development or immunotherapy.


Asunto(s)
Proteínas de Escherichia coli , Lipopolisacáridos , Lipopolisacáridos/metabolismo , Galactosa/metabolismo , Antígenos O/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Antibacterianos
6.
Nat Microbiol ; 9(7): 1778-1791, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38783023

RESUMEN

Antimicrobial resistance is a leading cause of mortality, calling for the development of new antibiotics. The fungal antibiotic plectasin is a eukaryotic host defence peptide that blocks bacterial cell wall synthesis. Here, using a combination of solid-state nuclear magnetic resonance, atomic force microscopy and activity assays, we show that plectasin uses a calcium-sensitive supramolecular killing mechanism. Efficient and selective binding of the target lipid II, a cell wall precursor with an irreplaceable pyrophosphate, is achieved by the oligomerization of plectasin into dense supra-structures that only form on bacterial membranes that comprise lipid II. Oligomerization and target binding of plectasin are interdependent and are enhanced by the coordination of calcium ions to plectasin's prominent anionic patch, causing allosteric changes that markedly improve the activity of the antibiotic. Structural knowledge of how host defence peptides impair cell wall synthesis will likely enable the development of superior drug candidates.


Asunto(s)
Calcio , Pared Celular , Péptidos , Uridina Difosfato Ácido N-Acetilmurámico , Pared Celular/metabolismo , Pared Celular/efectos de los fármacos , Pared Celular/química , Calcio/metabolismo , Péptidos/farmacología , Péptidos/metabolismo , Péptidos/química , Uridina Difosfato Ácido N-Acetilmurámico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurámico/metabolismo , Uridina Difosfato Ácido N-Acetilmurámico/química , Microscopía de Fuerza Atómica , Antibacterianos/farmacología , Antibacterianos/química , Espectroscopía de Resonancia Magnética , Unión Proteica
7.
iScience ; 25(8): 104753, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35942089

RESUMEN

N-Acetylglucosamine (GlcNAc) is an essential monosaccharide required in almost all organisms. Fluorescent labeling of the peptidoglycan (PG) on N-acetylglucosamine has been poorly explored. Here, we report on the labeling of the PG with a bioorthogonal handle on the GlcNAc. We developed a facile one-step synthesis of uridine diphosphate N-azidoacetylglucosamine (UDP-GlcNAz) using the glycosyltransferase OleD, followed by in vitro incorporation of GlcNAz into the peptidoglycan precursor Lipid II and fluorescent labeling of the azido group via click chemistry. In a PG synthesis assay, fluorescent GlcNAz-labeled Lipid II was incorporated into peptidoglycan by the DD-transpeptidase activity of bifunctional class A penicillin-binding proteins. We further demonstrate the incorporation of GlcNAz into the PG layer of OleD-expressed bacteria by feeding with 2-chloro-4-nitrophenyl GlcNAz (GlcNAz-CNP). Hence, our labeling method using the heterologous expression of OleD is useful to study PG synthesis and possibly other biological processes involving GlcNAc metabolism in vivo.

8.
J Biomed Nanotechnol ; 13(2): 204-20, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29377650

RESUMEN

The efficacy of photodynamic therapy (PDT) in some solid tumors is limited by the poor biodistributive properties of conventional photosensitizers and a natural predisposition of tumor cells to survive hypoxia and oxidative stress. This study investigated the therapeutic potential of a third-generation photosensitizer, liposomal zinc phthalocyanine (ZnPC), in combination with the hypoxic cytotoxin tirapazamine (TPZ). TPZ induces DNA double strand breaks (DSBs) under hypoxic conditions and subsequent apoptosis via p53 signaling. Experiments were performed in tumor cells with functional p53 (Sk-Cha1) and dysfunctional p53 (A431). The combination therapy of TPZ and PDT induced DNA DSBs and cell cycle stalling and enhanced the cytotoxicity of PDT by exacerbating apopotic and non-apoptotic tumor cell death. These phenomena occurred regardless of oxygen tension and the mechanism of cell death differed per cell line. Liposomes containing both ZnPC and TPZ exhibited no dark toxicity but were more lethal to both cell types after PDT compared to ZnPC-liposomes lacking TPZ­an effect that was more pronounced under hypoxic conditions. In conclusion, TPZ is a suitable pharmaceutical compound to increase PDT efficacy by exploiting the post-PDT tumor hypoxia. The inclusion of TPZ and ZnPC into a single liposomal delivery system was feasible. The PDT strategy described in this study may be valuable for the treatment of PDT-recalcitrant tumors.


Asunto(s)
Antineoplásicos/farmacología , Daño del ADN/efectos de los fármacos , Indoles/farmacología , Liposomas/farmacología , Compuestos Organometálicos/farmacología , Fotoquimioterapia/métodos , Triazinas/farmacología , Antineoplásicos/química , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Indoles/química , Isoindoles , Liposomas/química , Neoplasias/metabolismo , Compuestos Organometálicos/química , Estrés Oxidativo/efectos de los fármacos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Especies Reactivas de Oxígeno , Tirapazamina , Triazinas/química , Compuestos de Zinc
9.
Food Funct ; 4(8): 1209-15, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23719714

RESUMEN

Treatment of rat brain C6 astroglioma cells with furan fatty acid F6 prior to exposure to hydrogen peroxide shows a strong protective effect of F6 against cell death resulting from oxidative stress. This protective effect is obtained only for F6 administered as a free fatty acid and with an intact furan ring. It is proposed that brain cells are rescued by F6 scavenging radicals elicited by lipid peroxidation within the cell membrane. Oxidative processes outside the cell membrane, such as protein carbonylation, are not affected by F6. Furan fatty acids such as those present in fish oils and marine organisms are likely beneficial for consumption in reducing the risk of diseases that have been implicated to arise from oxidative stress, such as Alzheimer's disease.


Asunto(s)
Apoptosis , Encéfalo/citología , Encéfalo/metabolismo , Ácidos Grasos/metabolismo , Furanos/metabolismo , Peróxido de Hidrógeno/líquido cefalorraquídeo , Estrés Oxidativo , Sustancias Protectoras/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Ácidos Grasos/química , Furanos/química , Peróxido de Hidrógeno/toxicidad , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/química , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA