Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plants (Basel) ; 13(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38475429

RESUMEN

The utmost goal of selecting an RNA-Seq alignment software is to perform accurate alignments with a robust algorithm, which is capable of detecting the various intricacies underlying read-mapping procedures and beyond. Most alignment software tools are typically pre-tuned with human or prokaryotic data, and therefore may not be suitable for applications to other organisms, such as plants. The rapidly growing plant RNA-Seq databases call for the assessment of the alignment tools on curated plant data, which will aid the calibration of these tools for applications to plant transcriptomic data. We therefore focused here on benchmarking RNA-Seq read alignment tools, using simulated data derived from the model organism Arabidopsis thaliana. We assessed the performance of five popular RNA-Seq alignment tools that are currently available, based on their usage (citation count). By introducing annotated single nucleotide polymorphisms (SNPs) from The Arabidopsis Information Resource (TAIR), we recorded alignment accuracy at both base-level and junction base-level resolutions for each alignment tool. In addition to assessing the performance of the alignment tools at their default settings, accuracies were also recorded by varying the values of numerous parameters, including the confidence threshold and the level of SNP introduction. The performances of the aligners were found consistent under various testing conditions at the base-level accuracy; however, the junction base-level assessment produced varying results depending upon the applied algorithm. At the read base-level assessment, the overall performance of the aligner STAR was superior to other aligners, with the overall accuracy reaching over 90% under different test conditions. On the other hand, at the junction base-level assessment, SubRead emerged as the most promising aligner, with an overall accuracy over 80% under most test conditions.

2.
Antibiotics (Basel) ; 12(11)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37998806

RESUMEN

In his 1945 Nobel Prize acceptance speech, Sir Alexander Fleming warned of antimicrobial resistance (AMR) if the necessary precautions were not taken diligently. As the growing threat of AMR continues to loom over humanity, we must look forward to alternative diagnostic tools and preventive measures to thwart looming economic collapse and untold mortality worldwide. The integration of machine learning (ML) methodologies within the framework of such tools/pipelines presents a promising avenue, offering unprecedented insights into the underlying mechanisms of resistance and enabling the development of more targeted and effective treatments. This paper explores the applications of ML in predicting and understanding AMR, highlighting its potential in revolutionizing healthcare practices. From the utilization of supervised-learning approaches to analyze genetic signatures of antibiotic resistance to the development of tools and databases, such as the Comprehensive Antibiotic Resistance Database (CARD), ML is actively shaping the future of AMR research. However, the successful implementation of ML in this domain is not without challenges. The dependence on high-quality data, the risk of overfitting, model selection, and potential bias in training data are issues that must be systematically addressed. Despite these challenges, the synergy between ML and biomedical research shows great promise in combating the growing menace of antibiotic resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA