Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Radiol Prot ; 44(1)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38193305

RESUMEN

Veterans of the British nuclear testing programme represent a population of ex-military personnel who had the potential to be exposed to ionising radiation through their participation at nuclear testing sites in the 1950s and 1960s. In the intervening years, members of this population have raised concerns about the status of their health and that of their descendants, as a consequence. Radiation dose estimates based on film badge measurements of external dose recorded at the time of the tests suggest any exposure to be limited for the majority of personnel, however, only ∼20% of personnel were monitored and no measurement for internalised exposure are on record. Here, to in-part address families concerns, we assay for chromosomal evidence of historical radiation exposure in a group of aged nuclear test (NT) veterans, using multiplexin situhybridisation (M-FISH), for comparison with a matched group of veterans who were not present at NT sites. In total, we analysed 9379 and 7698 metaphase cells using M-FISH (24-colour karyotyping) from 48 NT and 38 control veteran samples, representing veteran servicemen from the army, Royal Airforce and Royal Navy. We observed stable and unstable simple- and complex-type chromosome aberrations in both NT and control veterans' samples, however find no significant difference in yield of any chromosome aberration type between the two cohorts. We do observe higher average frequencies of complex chromosome aberrations in a very small subset of veterans previously identified as having a higher potential for radiation exposure, which may be indicative of internalised contamination to long-lived radionuclides from radiation fallout. By utilising recently published whole genome sequence analysis data of a sub-set of the same family groups, we examined for but found no relationship between paternal chromosome aberration burden, germline mutation frequency and self-reported concerns of adverse health in family members, suggesting that the previously reported health issues by participants in this study are unlikely to be associated with historical radiation exposure. We did observe a small number of families, representing both control and NT cohorts, showing a relationship between paternal chromosome aberrations and germline mutation sub-types which should be explored in future studies. In conclusion, we find no cytogenetic evidence of historical radiation exposure in the cohort of nuclear veterans sampled here, offering reassurance that attendance at NTs sites by the veterans sampled here, was not associated with significant levels of exposure to radiation.


Asunto(s)
Aberraciones Cromosómicas , Personal Militar , Humanos , Anciano , Radiación Ionizante , Bioensayo , Familia
2.
Crit Rev Food Sci Nutr ; 60(5): 722-739, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30729795

RESUMEN

Folic acid (FA) is often consumed as a food supplement and can be found in fortified staple foods in various western countries. Even though FA supplementation during pregnancy is known to prevent severe congenital anomalies in the developing child (e.g., neural tube defects), much less is known about its influence on cognition and neurological functioning. In this review, we address the advances in this field and situate how folate intake during pregnancy, postnatal life, adulthood and in the elderly affects cognition. In addition, an association between folate status and ageing, dementia and other neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis is discussed. While its role in the incidence and severity of these diseases is becoming apparent, the underlying action of folates and related metabolites remains elusive. Finally, the potential of FA as a nutraceutical has been proposed, although the efficacy will highly depend on the interplay with other micronutrients, the disease stage and the duration of supplementation. Hence, the lack of consistent data urges for more animal studies and (pre)clinical trials in humans to ascertain a potential beneficial role for folates in the treatment or amelioration of cognitive decline and ageing-related disorders.


Asunto(s)
Envejecimiento/metabolismo , Cognición , Ácido Fólico/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Envejecimiento/efectos de los fármacos , Cognición/efectos de los fármacos , Suplementos Dietéticos , Ácido Fólico/uso terapéutico , Deficiencia de Ácido Fólico/complicaciones , Deficiencia de Ácido Fólico/dietoterapia , Deficiencia de Ácido Fólico/tratamiento farmacológico , Deficiencia de Ácido Fólico/metabolismo , Humanos , Enfermedades Neurodegenerativas/complicaciones , Enfermedades Neurodegenerativas/tratamiento farmacológico
3.
Int J Radiat Biol ; : 1-34, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38335529

RESUMEN

PURPOSE: To provide a synthesis of the published evidence pertaining to the intergenerational health effects of parental preconceptional exposure to ionizing radiation in humans. METHODS: The study populations are the descendants of those who were exposed to ionizing radiation prior to conception. A Boolean search identified publications for review in accordance with Office of Health Assessment and Translation guidelines. Initially, a risk of bias assessment was conducted for each published study and relevant data extracted. Information was organized into adverse health outcome groups and exposure situations. To make an assessment from the body of evidence within each group, an initial confidence rating was assigned, before factors including inconsistencies between studies, magnitude of effect, dose response and confounders were considered. From this, 'an effect', 'no effect' or whether the evidence remained 'inadequate' to determine either effect or no effect, was ascertained. This assessment was based primarily upon the author's conclusions within that evidence-base and, by binomial probability testing of the direction of effect reported. RESULTS: 2441 publications were identified for review which after screening was reduced to 127. For the majority of the adverse health groups, we find there to be inadequate evidence from which to determine whether the health effect was, or was not, associated with parental preconceptional radiation exposure. This was largely due to heterogeneity between individual study's findings and conclusions within each group and, the limited number of studies within each group. We did observe one health grouping (congenital abnormalities) in occupationally exposed populations, where an increase in effect relative to their controls or large magnitude of effects, were reported, although it is noted that the authors of these studies interpreted their findings as most likely not to be associated with parental radiation exposure. CONCLUSIONS: We find there to be a lack of evidence to enable the formal assessment of radiation-related adverse effects in offspring of exposed humans. This is not the same as there being no clear evidence that effects may occur but does infer that if adverse health effects do arise in children of exposed parents, then these effects are small and difficult to reproducibly measure. Inconsistencies in designing studies are unavoidable, however we highlight the need for an element of standardization and, more sharing of primary datasets as part of open access initiatives, in order for future reviews to make reasonable conclusions. Overall, there is a need for future work to ensure comparable measures between studies where possible.

4.
Front Toxicol ; 6: 1359507, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742231

RESUMEN

In the European regulatory context, rodent in vivo studies are the predominant source of neurotoxicity information. Although they form a cornerstone of neurotoxicological assessments, they are costly and the topic of ethical debate. While the public expects chemicals and products to be safe for the developing and mature nervous systems, considerable numbers of chemicals in commerce have not, or only to a limited extent, been assessed for their potential to cause neurotoxicity. As such, there is a societal push toward the replacement of animal models with in vitro or alternative methods. New approach methods (NAMs) can contribute to the regulatory knowledge base, increase chemical safety, and modernize chemical hazard and risk assessment. Provided they reach an acceptable level of regulatory relevance and reliability, NAMs may be considered as replacements for specific in vivo studies. The European Partnership for the Assessment of Risks from Chemicals (PARC) addresses challenges to the development and implementation of NAMs in chemical risk assessment. In collaboration with regulatory agencies, Project 5.2.1e (Neurotoxicity) aims to develop and evaluate NAMs for developmental neurotoxicity (DNT) and adult neurotoxicity (ANT) and to understand the applicability domain of specific NAMs for the detection of endocrine disruption and epigenetic perturbation. To speed up assay time and reduce costs, we identify early indicators of later-onset effects. Ultimately, we will assemble second-generation developmental neurotoxicity and first-generation adult neurotoxicity test batteries, both of which aim to provide regulatory hazard and risk assessors and industry stakeholders with robust, speedy, lower-cost, and informative next-generation hazard and risk assessment tools.

5.
Int J Radiat Biol ; 96(9): 1104-1118, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32716221

RESUMEN

PURPOSE: Exposure to ionizing radiation following environmental contamination (e.g., the Chernobyl and Fukushima nuclear accidents), radiotherapy and diagnostics, occupational roles and space travel has been identified as a possible risk-factor for cognitive dysfunction. The deleterious effects of high doses (≥1.0 Gy) on cognitive functioning are fairly well-understood, while the consequences of low (≤0.1 Gy) and moderate doses (0.1-1.0 Gy) have been receiving more research interest over the past decade. In addition to any impact of actual exposure on cognitive functioning, the persistent psychological stress arising from perceived exposure, particularly following nuclear accidents, may itself impact cognitive functioning. In this review we offer a novel interdisciplinary stance on the cognitive impact of radiation exposure, considering psychological and epidemiological observations of different exposure scenarios such as atomic bombings, nuclear accidents, occupational and medical exposures while accounting for differences in dose, rate of exposure and exposure type. The purpose is to address the question that perceived radiation exposure - even where the actual absorbed dose is 0.0 Gy above background dose - can result in psychological stress, which could in turn lead to cognitive dysfunction. In addition, we highlight the interplay between the mechanisms of perceived exposure (i.e., stress) and actual exposure (i.e., radiation-induced cellular damage), in the generation of radiation-induced cognitive dysfunction. In all, we offer a comprehensive and objective review addressing the potential for cognitive defects in the context of low- and moderate-dose IR exposures. CONCLUSIONS: Overall the evidence shows prenatal exposure to low and moderate doses to be detrimental to brain development and subsequent cognitive functioning, however the evidence for adolescent and adult low- and moderate-dose exposure remains uncertain. The persistent psychological stress following accidental exposure to low-doses in adulthood may pose a greater threat to our cognitive functioning. Indeed, the psychological implications for instructed cohorts (e.g., astronauts and radiotherapy patients) is less clear and warrants further investigation. Nonetheless, the psychosocial consequences of low- and moderate-dose exposure must be carefully considered when evaluating radiation effects on cognitive functioning, and to avoid unnecessary harm when planning public health response strategies.


Asunto(s)
Disfunción Cognitiva/etiología , Exposición a la Radiación/efectos adversos , Traumatismos por Radiación/fisiopatología , Animales , Humanos
6.
Reprod Toxicol ; 91: 59-73, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31705956

RESUMEN

Recent studies highlighted a link between ionizing radiation exposure during neurulation and birth defects such as microphthalmos and anophthalmos. Because the mechanisms underlying these defects remain largely unexplored, we irradiated pregnant C57BL/6J mice (1.0 Gy, X-rays) at embryonic day (E)7.5, followed by histological and gene/protein expression analyses at defined days. Irradiation impaired embryonic development at E9 and we observed a delayed pigmentation of the retinal pigment epithelium (RPE) at E11. In addition, a reduced RNA expression and protein abundance of critical eye-development genes (e.g. Pax6 and Lhx2) was observed. Furthermore, a decreased expression of Mitf, Tyr and Tyrp1 supported the radiation-induced perturbation in RPE pigmentation. Finally, via immunostainings for proliferation (Ki67) and mitosis (phosphorylated histone 3), a decreased mitotic index was observed in the E18 retina after exposure at E7.5. Overall, we propose a plausible etiological model for radiation-induced eye-size defects, with RPE melanogenesis as a major determining factor.


Asunto(s)
Melaninas/metabolismo , Traumatismos Experimentales por Radiación/metabolismo , Epitelio Pigmentado de la Retina/efectos de la radiación , Rayos X/efectos adversos , Animales , Desarrollo Embrionario/efectos de la radiación , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Ratones Endogámicos C57BL , Tamaño de los Órganos/efectos de la radiación , Traumatismos Experimentales por Radiación/genética , Epitelio Pigmentado de la Retina/anomalías , Epitelio Pigmentado de la Retina/metabolismo
7.
Front Behav Neurosci ; 14: 609660, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33488367

RESUMEN

Previous studies suggested a causal link between pre-natal exposure to ionizing radiation and birth defects such as microphthalmos and exencephaly. In mice, these defects arise primarily after high-dose X-irradiation during early neurulation. However, the impact of sublethal (low) X-ray doses during this early developmental time window on adult behavior and morphology of central nervous system structures is not known. In addition, the efficacy of folic acid (FA) in preventing radiation-induced birth defects and persistent radiation-induced anomalies has remained unexplored. To assess the efficacy of FA in preventing radiation-induced defects, pregnant C57BL6/J mice were X-irradiated at embryonic day (E)7.5 and were fed FA-fortified food. FA partially prevented radiation-induced (1.0 Gy) anophthalmos, exencephaly and gastroschisis at E18, and reduced the number of pre-natal deaths, fetal weight loss and defects in the cervical vertebrae resulting from irradiation. Furthermore, FA food fortification counteracted radiation-induced impairments in vision and olfaction, which were evidenced after exposure to doses ≥0.1 Gy. These findings coincided with the observation of a reduction in thickness of the retinal ganglion cell and nerve fiber layer, and a decreased axial length of the eye following exposure to 0.5 Gy. Finally, MRI studies revealed a volumetric decrease of the hippocampus, striatum, thalamus, midbrain and pons following 0.5 Gy irradiation, which could be partially ameliorated after FA food fortification. Altogether, our study is the first to offer detailed insights into the long-term consequences of X-ray exposure during neurulation, and supports the use of FA as a radioprotectant and antiteratogen to counter the detrimental effects of X-ray exposure during this crucial period of gestation.

8.
Birth Defects Res ; 110(6): 467-482, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29193908

RESUMEN

BACKGROUND: Both epidemiological and animal studies have previously indicated a link between in utero radiation exposure and birth defects such as microphthalmos, anophthalmos, and exencephaly. However, detailed knowledge on embryonic radiosensitivity during different stages of neurulation is limited, especially in terms of neural tube defect and eye defect development. METHODS: To assess the most radiosensitive stage during neurulation, pregnant C57BL6/J mice were X-irradiated (0.5 Gy or 1.0 Gy) at embryonic days (E)7, E7.5, E8, E8.5, or E9. Next, the fetuses were scored macroscopically for various defects and prenatal resorptions/deaths were counted. In addition, cranial skeletal development was ascertained using the alcian-alizarin method. Furthermore, postnatal/young adult survival was followed until 5 weeks (W5) of age, after X-irradiation at E7.5 (0.1 Gy, 0.5 Gy, or 1.0 Gy). In addition, body and brain weights were registered at adult age (W10) following X-ray exposure at E7.5 (0.1 Gy, 0.5 Gy). RESULTS: Several malformations, including microphthalmos and exencephaly, were most evident after irradiation at E7.5, with significance starting respectively at 0.5 Gy and 1.0 Gy. Prenatal mortality and weight were significantly affected in all irradiated groups. Long-term follow-up of E7.5 irradiated animals revealed a reduction in survival at 5 weeks of age after high dose exposure (1.0 Gy), while lower doses (0.5 Gy, 0.1 Gy) did not affect brain and body weight at postnatal week 10. CONCLUSIONS: With this study, we gained more insight in radiosensitivity throughout neurulation, and offered a better defined model to further study radiation-induced malformations and the underlying mechanisms.


Asunto(s)
Anomalías Congénitas/etiología , Anomalías Congénitas/mortalidad , Neurulación/efectos de la radiación , Animales , Relación Dosis-Respuesta en la Radiación , Embrión de Mamíferos/efectos de la radiación , Femenino , Muerte Fetal , Peso Fetal/efectos de la radiación , Feto/efectos de la radiación , Ratones , Tolerancia a Radiación , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA