Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(30): 17891-17902, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32661151

RESUMEN

Keystone species have large ecological effects relative to their abundance and have been identified in many ecosystems. However, global change is pervasively altering environmental conditions, potentially elevating new species to keystone roles. Here, we reveal that a historically innocuous grazer-the marsh crab Sesarma reticulatum-is rapidly reshaping the geomorphic evolution and ecological organization of southeastern US salt marshes now burdened by rising sea levels. Our analyses indicate that sea-level rise in recent decades has widely outpaced marsh vertical accretion, increasing tidal submergence of marsh surfaces, particularly where creeks exhibit morphologies that are unable to efficiently drain adjacent marsh platforms. In these increasingly submerged areas, cordgrass decreases belowground root:rhizome ratios, causing substrate hardness to decrease to within the optimal range for Sesarma burrowing. Together, these bio-physical changes provoke Sesarma to aggregate in high-density grazing and burrowing fronts at the heads of tidal creeks (hereafter, creekheads). Aerial-image analyses reveal that resulting "Sesarma-grazed" creekheads increased in prevalence from 10 ± 2% to 29 ± 5% over the past <25 y and, by tripling creek-incision rates relative to nongrazed creekheads, have increased marsh-landscape drainage density by 8 to 35% across the region. Field experiments further demonstrate that Sesarma-grazed creekheads, through their removal of vegetation that otherwise obstructs predator access, enhance the vulnerability of macrobenthic invertebrates to predation and strongly reduce secondary production across adjacent marsh platforms. Thus, sea-level rise is creating conditions within which Sesarma functions as a keystone species that is driving dynamic, landscape-scale changes in salt-marsh geomorphic evolution, spatial organization, and species interactions.

2.
Wetlands (Wilmington) ; 43(8): 105, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38037553

RESUMEN

Wetlands cover a small portion of the world, but have disproportionate influence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fluxes. However, the underlying biogeochemical processes that affect wetland C pools and fluxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational, experimental, and analytical approaches have been developed to understand and quantify pools and fluxes of wetland C. Sampling approaches range in their representation of wetland C from short to long timeframes and local to landscape spatial scales. This review summarizes common and cutting-edge methodological approaches for quantifying wetland C pools and fluxes. We first define each of the major C pools and fluxes and provide rationale for their importance to wetland C dynamics. For each approach, we clarify what component of wetland C is measured and its spatial and temporal representativeness and constraints. We describe practical considerations for each approach, such as where and when an approach is typically used, who can conduct the measurements (expertise, training requirements), and how approaches are conducted, including considerations on equipment complexity and costs. Finally, we review key covariates and ancillary measurements that enhance the interpretation of findings and facilitate model development. The protocols that we describe to measure soil, water, vegetation, and gases are also relevant for related disciplines such as ecology. Improved quality and consistency of data collection and reporting across studies will help reduce global uncertainties and develop management strategies to use wetlands as nature-based climate solutions. Supplementary Information: The online version contains supplementary material available at 10.1007/s13157-023-01722-2.

3.
Environ Sci Technol ; 55(12): 7981-7989, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34019756

RESUMEN

This study analyzed the impact of urban-soil pedogenesis on soil lead (Pb) contamination from paint and gasoline in the historic core of Durham, North Carolina. Total soil Pb in 1000 samples from streetsides, residential properties, and residual upland and floodplains ranged from 6 to 8825 mg/kg (mean = 211 mg/kg), with 50% of samples between 50 and 200 mg/kg soil Pb. The highest Pb concentrations were within 1 m of pre-1978 residential foundations, with concentrations inversely correlated with house age. Streetside soil Pb concentrations were elevated over the geologic background of <30 mg/kg and correlated with traffic flow. Streetside soil Pb concentrations were lower than Durham streetside soils collected in the 1970s, which was attributed to urban pedogenesis, the complex of natural and human processes that change soils over time. Accelerated erosion redistributes legacy Pb and floodplain sampling indicates sedimentation rates of up to 4 mm/year. Mixing and burial of soil with elevated Pb are also lowering soil Pb concentrations over time. These mechanisms are likely of greater significance on streetsides than near foundation soils. The development of an urban-pedogenesis framework can help guide public health approaches to Pb exposure by incorporating pedogenic processes that reduce and dissipate soil Pb contamination.


Asunto(s)
Contaminantes del Suelo , Suelo , Ciudades , Monitoreo del Ambiente , Gasolina , Humanos , North Carolina , Pintura , Contaminantes del Suelo/análisis
4.
Limnol Oceanogr ; N/A: 1-19, 2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-32704188

RESUMEN

Tidal freshwater marshes can protect downstream ecosystems from eutrophication by intercepting excess nutrient loads, but recent studies in salt marshes suggest nutrient loading compromises their structural and functional integrity. Here, we present data on changes in plant biomass, microbial biomass and activity, and soil chemistry from plots in a tidal freshwater marsh on the Altamaha River (GA) fertilized for 10 yr with nitrogen (+N), phosphorus (+P), or nitrogen and phosphorus (+NP). Nitrogen alone doubled aboveground biomass and enhanced microbial activity, specifically rates of potential nitrification, denitrification, and methane production measured in laboratory incubations. Phosphorus alone increased soil P and doubled microbial biomass but did not affect microbial processes. Nitrogen or P alone decreased belowground biomass and soil carbon (C) whereas +NP increased aboveground biomass, microbial biomass and N cycling, and N, P, and C assimilation and burial more than either nutrient alone. Our findings suggest differential nutrient limitation of tidal freshwater macrophytes by N and microbes by P, similar to what has been observed in salt marshes. Macrophytes outcompete microbes for P in response to long-term N and P additions, leading to increased soil C storage through increased inputs of belowground biomass relative to N and P added singly. The susceptibility of tidal freshwater marshes to long-term nutrient enrichment and, hence their ability to mitigate eutrophication will depend on the quantity and relative proportion of N vs. P entering estuaries and tidal wetlands.

5.
Proc Natl Acad Sci U S A ; 113(8): 1978-86, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26858425

RESUMEN

Geographically isolated wetlands (GIWs), those surrounded by uplands, exchange materials, energy, and organisms with other elements in hydrological and habitat networks, contributing to landscape functions, such as flow generation, nutrient and sediment retention, and biodiversity support. GIWs constitute most of the wetlands in many North American landscapes, provide a disproportionately large fraction of wetland edges where many functions are enhanced, and form complexes with other water bodies to create spatial and temporal heterogeneity in the timing, flow paths, and magnitude of network connectivity. These attributes signal a critical role for GIWs in sustaining a portfolio of landscape functions, but legal protections remain weak despite preferential loss from many landscapes. GIWs lack persistent surface water connections, but this condition does not imply the absence of hydrological, biogeochemical, and biological exchanges with nearby and downstream waters. Although hydrological and biogeochemical connectivity is often episodic or slow (e.g., via groundwater), hydrologic continuity and limited evaporative solute enrichment suggest both flow generation and solute and sediment retention. Similarly, whereas biological connectivity usually requires overland dispersal, numerous organisms, including many rare or threatened species, use both GIWs and downstream waters at different times or life stages, suggesting that GIWs are critical elements of landscape habitat mosaics. Indeed, weaker hydrologic connectivity with downstream waters and constrained biological connectivity with other landscape elements are precisely what enhances some GIW functions and enables others. Based on analysis of wetland geography and synthesis of wetland functions, we argue that sustaining landscape functions requires conserving the entire continuum of wetland connectivity, including GIWs.


Asunto(s)
Modelos Biológicos , Humedales , América del Norte
6.
Environ Manage ; 56(4): 998-1008, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26108413

RESUMEN

Tidal salt marshes provide important ecological services, habitat, disturbance regulation, water quality improvement, and biodiversity, as well as accumulation and sequestration of carbon dioxide (CO2) in vegetation and soil organic matter. Different management practices may alter their capacity to provide these ecosystem services. We examined soil properties (bulk density, percent organic C, percent N), C and N pools, C sequestration and N accumulation at four marshes managed with open marsh water management (OMWM) and four marshes that were not at U.S. Fish and Wildlife National Wildlife Refuges (NWRs) on the East Coast of the United States. Soil properties (bulk density, percent organic C, percent N) exhibited no consistent differences among managed and non-OMWM marshes. Soil organic carbon pools (0-60-cm depth) also did not differ. Managed marshes contained 15.9 kg C/m(2) compared to 16.2 kg C/m(2) in non-OMWM marshes. Proportionately, more C (per unit volume) was stored in surface than in subsurface soils. The rate of C sequestration, based on (137)Cs and (210)Pb dating of soil cores, ranged from 41 to 152 g/m(2)/year. Because of the low emissions of CH4 from salt marshes relative to freshwater wetlands and the ability to sequester C in soil, protection and restoration of salt marshes can be a vital tool for delivering key ecosystem services, while at the same time, reducing the C footprint associated with managing these wetlands.


Asunto(s)
Secuestro de Carbono , Monitoreo del Ambiente/métodos , Humedales , Animales , Biodiversidad , Carbono/análisis , Ecosistema , New England , Nitrógeno/análisis , Poaceae/crecimiento & desarrollo , Datación Radiométrica , Cloruro de Sodio/análisis , Suelo/química
7.
J Environ Qual ; 43(1): 409-17, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25602575

RESUMEN

We measured soil properties, carbon and nutrient (nitrogen, phosphorus) pools, ambient and potential denitrification, and phosphorus sorption index (PSI) in natural depressional wetlands and depressional wetlands restored through the U.S. Department of Agriculture (USDA) Wetland Reserve Program. We measured the same suite of variables in natural and USDA Conservation Reserve Program-restored riparian buffers and in agricultural fields adjacent to both systems to determine the degree to which ecosystem services are being provided through restoration in different hydrogeomorphic settings. Organic carbon and nutrient pools, PSI, and denitrification were greater in natural than in 5- to 10-yr-old restored depressional wetlands. In riparian soils, carbon and nutrient pools, PSI, and denitrification were comparable between restored and natural systems, suggesting that these services develop quickly after restoration. Restored depressional wetlands had lower soil organic C, N, and P relative to agricultural soils, whereas the opposite trend was observed in restored riparian soils. Four-year-old restored riparian buffers achieved equivalence to natural riparian buffers within 4 yr, whereas restored depressional wetlands took longer to provide these ecosystem services (i.e., PSI, denitrification, C storage) at levels comparable to natural wetlands. Restored depressional wetlands and riparian buffers provide ecosystem services lost through previous conversion to agriculture throughout the Midwest; however, the development of these services depends on hydrodynamics (pulsed versus nonpulsed), parent material, soil texture (sand, clay), and disturbance regime (prescribed fire) of the site. As restoration continues throughout the region, C sequestration and nutrient removal in these systems is expected to increase water quality at the local and regional levels.

8.
Sci Total Environ ; 922: 171025, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38387593

RESUMEN

Coastal salt marshes are depositional environments that can accumulate pollutants introduced to the environment from human activities. Metals are a contaminant of concern in coastal environments due to their longevity and toxicity. We assessed metal concentrations and accumulation rates in nine salt marsh sites along the U.S. East Coast from Maine to Georgia. Following a metal mobility assay in organic-rich and mineral dominated salt marsh soils under aerobic/anaerobic and freshwater/saltwater conditions, we focused on profiles of chromium, nickel, copper, zinc, cadmium, lead, and uranium in two soil cores from each of the nine marshes that had previously been dated using lead-210 radioisotope techniques. We examined how land cover and the spatial distribution of land cover, marsh vertical accretion, and other watershed characteristics correlated with metal concentrations and depth/time-integrated accumulation of metals. We found statistically significant differences in metal concentrations and/or inventories between sites, with accumulation of metals positively correlated with both developed land cover in the watershed and rates of vertical accretion in the tidal marsh. The accumulation of chromium, cadmium, and lead were significantly correlated with developed land cover while the accumulation of chromium, nickel, copper, zinc, and lead were correlated with factors that determine sediment delivery from the landscape (e.g., riverine suspended sediment, soil erodibility in the watershed, and agricultural land cover skewed towards the coast) and measured wetland accretion rates. We observed declines in the concentration of many metals since 1925 at sites along the U.S. East Coast, indicating pollution mitigation strategies have succeeded in reducing metal pollution and delivery to the coastal zone. However, increasing rates of salt marsh vertical accretion over recent decades largely offset reductions in metal concentrations, resulting in rates of metal accumulation in coastal salt marsh soils that have not changed or, in some instances, increased over time.

9.
Sci Data ; 10(1): 797, 2023 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-37952023

RESUMEN

Tidal marshes store large amounts of organic carbon in their soils. Field data quantifying soil organic carbon (SOC) stocks provide an important resource for researchers, natural resource managers, and policy-makers working towards the protection, restoration, and valuation of these ecosystems. We collated a global dataset of tidal marsh soil organic carbon (MarSOC) from 99 studies that includes location, soil depth, site name, dry bulk density, SOC, and/or soil organic matter (SOM). The MarSOC dataset includes 17,454 data points from 2,329 unique locations, and 29 countries. We generated a general transfer function for the conversion of SOM to SOC. Using this data we estimated a median (± median absolute deviation) value of 79.2 ± 38.1 Mg SOC ha-1 in the top 30 cm and 231 ± 134 Mg SOC ha-1 in the top 1 m of tidal marsh soils globally. This data can serve as a basis for future work, and may contribute to incorporation of tidal marsh ecosystems into climate change mitigation and adaptation strategies and policies.

10.
Environ Manage ; 49(2): 473-82, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21986917

RESUMEN

We modeled changes in area of five habitats, tidal-freshwater forest, salt marsh, maritime shrub-scrub (shrub), maritime broadleaf forest (oak) and maritime narrowleaf (pine) forest, in coastal Georgia, USA, to evaluate how simultaneous habitat loss due to predicted changes in sea level rise (SLR) and urban development will affect priority bird species of the south Atlantic coastal plain by 2100. Development rates, based on regional growth plans, were modeled at 1% and 2.5% annual urban growth, while SLR rates, based on the Intergovernmental Panel on Climate Change's A1B mean and maximum scenarios, were modeled at 52 cm and 82 cm, respectively. SLR most greatly affected the shrub habitat with predicted losses of 35-43%. Salt marsh and tidal forest also were predicted to lose considerable area to SLR (20-45 and 23-35%, respectively), whereas oak and pine forests had lesser impact from SLR, 18-22% and 11-15%, respectively. Urban development resulted in losses of considerable pine (48-49%) and oak (53-55%) habitat with lesser loss of shrub habitat (21-24%). Under maximum SLR and urban growth, shrub habitat may lose up to 59-64% compared to as much as 62-65% pine forest and 74-75% oak forest. Conservation efforts should focus on protection of shrub habitat because of its small area relative to other terrestrial habitats and use by Painted Buntings (Passerina ciris), a Partners In Flight (PIF) extremely high priority species. Tidal forests also deserve protection because they are a likely refuge for forest species, such as Northern Parula and Acadian Flycatcher, with the decline of oak and pine forests due to urban development.


Asunto(s)
Aves , Cambio Climático , Ecosistema , Urbanización , Animales , Océano Atlántico , Sistemas de Información Geográfica , Georgia , Masculino , Densidad de Población , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA