Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.377
Filtrar
Más filtros

Colección CLAP
Intervalo de año de publicación
1.
Cell ; 165(2): 357-71, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27058666

RESUMEN

We report a mechanism through which the transcription machinery directly controls topoisomerase 1 (TOP1) activity to adjust DNA topology throughout the transcription cycle. By comparing TOP1 occupancy using chromatin immunoprecipitation sequencing (ChIP-seq) versus TOP1 activity using topoisomerase 1 sequencing (TOP1-seq), a method reported here to map catalytically engaged TOP1, TOP1 bound at promoters was discovered to become fully active only after pause-release. This transition coupled the phosphorylation of the carboxyl-terminal-domain (CTD) of RNA polymerase II (RNAPII) with stimulation of TOP1 above its basal rate, enhancing its processivity. TOP1 stimulation is strongly dependent on the kinase activity of BRD4, a protein that phosphorylates Ser2-CTD and regulates RNAPII pause-release. Thus the coordinated action of BRD4 and TOP1 overcame the torsional stress opposing transcription as RNAPII commenced elongation but preserved negative supercoiling that assists promoter melting at start sites. This nexus between transcription and DNA topology promises to elicit new strategies to intercept pathological gene expression.


Asunto(s)
ADN-Topoisomerasas de Tipo I/metabolismo , ADN/metabolismo , ARN Polimerasa II/metabolismo , Transcripción Genética , ADN/química , ADN-Topoisomerasas de Tipo I/genética , Técnicas de Silenciamiento del Gen , Humanos , Regiones Promotoras Genéticas , ARN Polimerasa II/química , ARN Polimerasa II/aislamiento & purificación , Elongación de la Transcripción Genética , Factores de Transcripción/aislamiento & purificación , Sitio de Iniciación de la Transcripción
2.
Immunity ; 54(1): 116-131.e10, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33271120

RESUMEN

Tumors frequently subvert major histocompatibility complex class I (MHC-I) peptide presentation to evade CD8+ T cell immunosurveillance, though how this is accomplished is not always well defined. To identify the global regulatory networks controlling antigen presentation, we employed genome-wide screening in human diffuse large B cell lymphomas (DLBCLs). This approach revealed dozens of genes that positively and negatively modulate MHC-I cell surface expression. Validated genes clustered in multiple pathways including cytokine signaling, mRNA processing, endosomal trafficking, and protein metabolism. Genes can exhibit lymphoma subtype- or tumor-specific MHC-I regulation, and a majority of primary DLBCL tumors displayed genetic alterations in multiple regulators. We established SUGT1 as a major positive regulator of both MHC-I and MHC-II cell surface expression. Further, pharmacological inhibition of two negative regulators of antigen presentation, EZH2 and thymidylate synthase, enhanced DLBCL MHC-I presentation. These and other genes represent potential targets for manipulating MHC-I immunosurveillance in cancers, infectious diseases, and autoimmunity.


Asunto(s)
Linfocitos B/fisiología , Biomarcadores de Tumor/genética , Antígenos HLA/genética , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase I/genética , Linfoma de Células B Grandes Difuso/genética , Carcinogénesis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Linaje de la Célula , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Regulación Neoplásica de la Expresión Génica , Pruebas Genéticas , Estudio de Asociación del Genoma Completo , Antígenos HLA/metabolismo , Humanos , Vigilancia Inmunológica , Linfoma de Células B Grandes Difuso/metabolismo , Escape del Tumor/genética
3.
Nature ; 630(8017): 744-751, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867042

RESUMEN

DNA base damage is a major source of oncogenic mutations1. Such damage can produce strand-phased mutation patterns and multiallelic variation through the process of lesion segregation2. Here we exploited these properties to reveal how strand-asymmetric processes, such as replication and transcription, shape DNA damage and repair. Despite distinct mechanisms of leading and lagging strand replication3,4, we observe identical fidelity and damage tolerance for both strands. For small alkylation adducts of DNA, our results support a model in which the same translesion polymerase is recruited on-the-fly to both replication strands, starkly contrasting the strand asymmetric tolerance of bulky UV-induced adducts5. The accumulation of multiple distinct mutations at the site of persistent lesions provides the means to quantify the relative efficiency of repair processes genome wide and at single-base resolution. At multiple scales, we show DNA damage-induced mutations are largely shaped by the influence of DNA accessibility on repair efficiency, rather than gradients of DNA damage. Finally, we reveal specific genomic conditions that can actively drive oncogenic mutagenesis by corrupting the fidelity of nucleotide excision repair. These results provide insight into how strand-asymmetric mechanisms underlie the formation, tolerance and repair of DNA damage, thereby shaping cancer genome evolution.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN Polimerasa Dirigida por ADN , ADN , Mutagénesis , Mutación , Animales , Humanos , Ratones , Alquilación/efectos de la radiación , Línea Celular , ADN/química , ADN/genética , ADN/metabolismo , ADN/efectos de la radiación , Aductos de ADN/química , Aductos de ADN/genética , Aductos de ADN/metabolismo , Aductos de ADN/efectos de la radiación , Daño del ADN/genética , Daño del ADN/efectos de la radiación , Reparación del ADN/genética , Reparación del ADN/fisiología , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Mutagénesis/genética , Mutagénesis/efectos de la radiación , Mutación/genética , Mutación/efectos de la radiación , Neoplasias/genética , Transcripción Genética , Rayos Ultravioleta/efectos adversos
4.
Mol Cell ; 82(16): 3045-3060.e11, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35752173

RESUMEN

Cancer mortality is primarily a consequence of its metastatic spread. Here, we report that methionine sulfoxide reductase A (MSRA), which can reduce oxidized methionine residues, acts as a suppressor of pancreatic ductal adenocarcinoma (PDA) metastasis. MSRA expression is decreased in the metastatic tumors of PDA patients, whereas MSRA loss in primary PDA cells promotes migration and invasion. Chemoproteomic profiling of pancreatic organoids revealed that MSRA loss results in the selective oxidation of a methionine residue (M239) in pyruvate kinase M2 (PKM2). Moreover, M239 oxidation sustains PKM2 in an active tetrameric state to promote respiration, migration, and metastasis, whereas pharmacological activation of PKM2 increases cell migration and metastasis in vivo. These results demonstrate that methionine residues can act as reversible redox switches governing distinct signaling outcomes and that the MSRA-PKM2 axis serves as a regulatory nexus between redox biology and cancer metabolism to control tumor metastasis.


Asunto(s)
Carcinoma Ductal Pancreático , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Neoplasias Pancreáticas , Hormonas Tiroideas/metabolismo , Carcinoma Ductal Pancreático/genética , Humanos , Metionina , Metionina Sulfóxido Reductasas/química , Metionina Sulfóxido Reductasas/metabolismo , Oxidación-Reducción , Neoplasias Pancreáticas/genética , Piruvato Quinasa/metabolismo , Proteínas de Unión a Hormona Tiroide , Neoplasias Pancreáticas
5.
Mol Cell ; 81(4): 691-707.e6, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33382985

RESUMEN

Aerobic glycolysis, or preferential fermentation of glucose-derived pyruvate to lactate despite available oxygen, is associated with proliferation across many organisms and conditions. To better understand that association, we examined the metabolic consequence of activating the pyruvate dehydrogenase complex (PDH) to increase pyruvate oxidation at the expense of fermentation. We find that increasing PDH activity impairs cell proliferation by reducing the NAD+/NADH ratio. This change in NAD+/NADH is caused by increased mitochondrial membrane potential that impairs mitochondrial electron transport and NAD+ regeneration. Uncoupling respiration from ATP synthesis or increasing ATP hydrolysis restores NAD+/NADH homeostasis and proliferation even when glucose oxidation is increased. These data suggest that when demand for NAD+ to support oxidation reactions exceeds the rate of ATP turnover in cells, NAD+ regeneration by mitochondrial respiration becomes constrained, promoting fermentation, despite available oxygen. This argues that cells engage in aerobic glycolysis when the demand for NAD+ is in excess of the demand for ATP.


Asunto(s)
Adenosina Trifosfato/metabolismo , Glucosa/metabolismo , Glucólisis , NAD/metabolismo , Células A549 , Adenosina Trifosfato/genética , Aerobiosis , Glucosa/genética , Células HeLa , Humanos , NAD/genética , Oxidación-Reducción
6.
N Engl J Med ; 390(23): 2143-2155, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38899693

RESUMEN

BACKGROUND: The identification of oncogenic mutations in diffuse large B-cell lymphoma (DLBCL) has led to the development of drugs that target essential survival pathways, but whether targeting multiple survival pathways may be curative in DLBCL is unknown. METHODS: We performed a single-center, phase 1b-2 study of a regimen of venetoclax, ibrutinib, prednisone, obinutuzumab, and lenalidomide (ViPOR) in relapsed or refractory DLBCL. In phase 1b, which included patients with DLBCL and indolent lymphomas, four dose levels of venetoclax were evaluated to identify the recommended phase 2 dose, with fixed doses of the other four drugs. A phase 2 expansion in patients with germinal-center B-cell (GCB) and non-GCB DLBCL was performed. ViPOR was administered every 21 days for six cycles. RESULTS: In phase 1b of the study, involving 20 patients (10 with DLBCL), a single dose-limiting toxic effect of grade 3 intracranial hemorrhage occurred, a result that established venetoclax at a dose of 800 mg as the recommended phase 2 dose. Phase 2 included 40 patients with DLBCL. Toxic effects that were observed among all the patients included grade 3 or 4 neutropenia (in 24% of the cycles), thrombocytopenia (in 23%), anemia (in 7%), and febrile neutropenia (in 1%). Objective responses occurred in 54% of 48 evaluable patients with DLBCL, and complete responses occurred in 38%; complete responses were exclusively in patients with non-GCB DLBCL and high-grade B-cell lymphoma with rearrangements of MYC and BCL2 or BCL6 (or both). Circulating tumor DNA was undetectable in 33% of the patients at the end of ViPOR therapy. With a median follow-up of 40 months, 2-year progression-free survival and overall survival were 34% (95% confidence interval [CI], 21 to 47) and 36% (95% CI, 23 to 49), respectively. CONCLUSIONS: Treatment with ViPOR was associated with durable remissions in patients with specific molecular DLBCL subtypes and was associated with mainly reversible adverse events. (Funded by the Intramural Research Program of the National Cancer Institute and the National Center for Advancing Translational Sciences of the National Institutes of Health and others; ClinicalTrials.gov number, NCT03223610.).


Asunto(s)
Adenina , Anticuerpos Monoclonales Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica , Compuestos Bicíclicos Heterocíclicos con Puentes , Lenalidomida , Linfoma de Células B Grandes Difuso , Piperidinas , Prednisona , Sulfonamidas , Humanos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/mortalidad , Femenino , Persona de Mediana Edad , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Sulfonamidas/efectos adversos , Sulfonamidas/administración & dosificación , Sulfonamidas/uso terapéutico , Anciano , Masculino , Compuestos Bicíclicos Heterocíclicos con Puentes/efectos adversos , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/administración & dosificación , Lenalidomida/efectos adversos , Lenalidomida/administración & dosificación , Lenalidomida/uso terapéutico , Piperidinas/efectos adversos , Piperidinas/uso terapéutico , Piperidinas/administración & dosificación , Adulto , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/administración & dosificación , Prednisona/efectos adversos , Prednisona/administración & dosificación , Prednisona/uso terapéutico , Adenina/análogos & derivados , Adenina/efectos adversos , Adenina/uso terapéutico , Adenina/administración & dosificación , Anciano de 80 o más Años , Recurrencia , Pirazoles/efectos adversos , Pirazoles/uso terapéutico , Pirazoles/administración & dosificación , Pirimidinas/efectos adversos , Pirimidinas/uso terapéutico , Pirimidinas/administración & dosificación , Terapia Molecular Dirigida , Supervivencia sin Progresión
7.
Proc Natl Acad Sci U S A ; 121(20): e2403871121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38717857

RESUMEN

DNA base damage is a major source of oncogenic mutations and disruption to gene expression. The stalling of RNA polymerase II (RNAP) at sites of DNA damage and the subsequent triggering of repair processes have major roles in shaping the genome-wide distribution of mutations, clearing barriers to transcription, and minimizing the production of miscoded gene products. Despite its importance for genetic integrity, key mechanistic features of this transcription-coupled repair (TCR) process are controversial or unknown. Here, we exploited a well-powered in vivo mammalian model system to explore the mechanistic properties and parameters of TCR for alkylation damage at fine spatial resolution and with discrimination of the damaged DNA strand. For rigorous interpretation, a generalizable mathematical model of DNA damage and TCR was developed. Fitting experimental data to the model and simulation revealed that RNA polymerases frequently bypass lesions without triggering repair, indicating that small alkylation adducts are unlikely to be an efficient barrier to gene expression. Following a burst of damage, the efficiency of transcription-coupled repair gradually decays through gene bodies with implications for the occurrence and accurate inference of driver mutations in cancer. The reinitation of transcription from the repair site is not a general feature of transcription-coupled repair, and the observed data is consistent with reinitiation never taking place. Collectively, these results reveal how the directional but stochastic activity of TCR shapes the distribution of mutations following DNA damage.


Asunto(s)
Daño del ADN , Reparación del ADN , ARN Polimerasa II , Transcripción Genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Animales , Procesos Estocásticos , Ratones , ADN/metabolismo , ADN/genética , Humanos , Alquilación , Mutación , Reparación por Escisión
8.
Nature ; 583(7815): 265-270, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32581361

RESUMEN

Cancers arise through the acquisition of oncogenic mutations and grow by clonal expansion1,2. Here we reveal that most mutagenic DNA lesions are not resolved into a mutated DNA base pair within a single cell cycle. Instead, DNA lesions segregate, unrepaired, into daughter cells for multiple cell generations, resulting in the chromosome-scale phasing of subsequent mutations. We characterize this process in mutagen-induced mouse liver tumours and show that DNA replication across persisting lesions can produce multiple alternative alleles in successive cell divisions, thereby generating both multiallelic and combinatorial genetic diversity. The phasing of lesions enables accurate measurement of strand-biased repair processes, quantification of oncogenic selection and fine mapping of sister-chromatid-exchange events. Finally, we demonstrate that lesion segregation is a unifying property of exogenous mutagens, including UV light and chemotherapy agents in human cells and tumours, which has profound implications for the evolution and adaptation of cancer genomes.


Asunto(s)
Segregación Cromosómica/genética , Evolución Molecular , Genoma/genética , Neoplasias/genética , Alelos , Animales , Reparación del ADN , Replicación del ADN , Receptores ErbB/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Masculino , Ratones , Mutación , Neoplasias/patología , Selección Genética , Transducción de Señal , Intercambio de Cromátides Hermanas , Transcripción Genética , Quinasas raf/metabolismo , Proteínas ras/metabolismo
9.
Nucleic Acids Res ; 52(1): 22-48, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37994702

RESUMEN

Closing each strand of a DNA duplex upon itself fixes its linking number L. This topological condition couples together the secondary and tertiary structures of the resulting ccDNA topoisomer, a constraint that is not present in otherwise identical nicked or linear DNAs. Fixing L has a range of structural, energetic and functional consequences. Here we consider how L having different integer values (that is, different superhelicities) affects ccDNA molecules. The approaches used are primarily theoretical, and are developed from a historical perspective. In brief, processes that either relax or increase superhelicity, or repartition what is there, may either release or require free energy. The energies involved can be substantial, sufficient to influence many events, directly or indirectly. Here two examples are developed. The changes of unconstrained superhelicity that occur during nucleosome attachment and release are examined. And a simple theoretical model of superhelically driven DNA structural transitions is described that calculates equilibrium distributions for populations of identical topoisomers. This model is used to examine how these distributions change with superhelicity and other factors, and applied to analyze several situations of biological interest.


Asunto(s)
ADN Superhelicoidal , ADN , ADN/química , Conformación de Ácido Nucleico , Nucleosomas , Modelos Químicos
10.
Proc Natl Acad Sci U S A ; 120(29): e2219074120, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37428919

RESUMEN

Using high-throughput microfluidic enzyme kinetics (HT-MEK), we measured over 9,000 inhibition curves detailing impacts of 1,004 single-site mutations throughout the alkaline phosphatase PafA on binding affinity for two transition state analogs (TSAs), vanadate and tungstate. As predicted by catalytic models invoking transition state complementary, mutations to active site and active-site-contacting residues had highly similar impacts on catalysis and TSA binding. Unexpectedly, most mutations to more distal residues that reduced catalysis had little or no impact on TSA binding and many even increased tungstate affinity. These disparate effects can be accounted for by a model in which distal mutations alter the enzyme's conformational landscape, increasing the occupancy of microstates that are catalytically less effective but better able to accommodate larger transition state analogs. In support of this ensemble model, glycine substitutions (rather than valine) were more likely to increase tungstate affinity (but not more likely to impact catalysis), presumably due to increased conformational flexibility that allows previously disfavored microstates to increase in occupancy. These results indicate that residues throughout an enzyme provide specificity for the transition state and discriminate against analogs that are larger only by tenths of an Ångström. Thus, engineering enzymes that rival the most powerful natural enzymes will likely require consideration of distal residues that shape the enzyme's conformational landscape and fine-tune active-site residues. Biologically, the evolution of extensive communication between the active site and remote residues to aid catalysis may have provided the foundation for allostery to make it a highly evolvable trait.


Asunto(s)
Monoéster Fosfórico Hidrolasas , Compuestos de Tungsteno , Catálisis , Mutación , Cinética , Sitios de Unión
11.
PLoS Genet ; 19(8): e1010888, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37616312

RESUMEN

Persons living with HIV (PLWH) have an increased risk for tuberculosis (TB). After prolonged and repeated exposure, some PLWH never develop TB and show no evidence of immune sensitization to Mycobacterium tuberculosis (Mtb) as defined by persistently negative tuberculin skin tests (TST) and interferon gamma release assays (IGRA). This group has been identified and defined as HIV+ persistently TB, tuberculin and IGRA negative (HITTIN). To investigate potential innate mechanisms unique to individuals with the HITTIN phenotype we compared their neutrophil Mtb infection response to that of PLWH, with no TB history, but who test persistently IGRA positive, and tuberculin positive (HIT). Neutrophil samples from 17 HITTIN (PMNHITTIN) and 11 HIT (PMNHIT) were isolated and infected with Mtb H37Rv for 1h and 6h. RNA was extracted and used for RNAseq analysis. Since there was no significant differential transcriptional response at 1h between infected PMNHITTIN and PMNHIT, we focused on the 6h timepoint. When compared to uninfected PMN, PMNHITTIN displayed 3106 significantly upregulated and 3548 significantly downregulated differentially expressed genes (DEGs) (absolute cutoff of a log2FC of 0.2, FDR < 0.05) whereas PMNHIT demonstrated 3816 significantly upregulated and 3794 significantly downregulated DEGs following 6h Mtb infection. Contrasting the log2FC 6h infection response to Mtb from PMNHITTIN against PMNHIT, 2285 genes showed significant differential response between the two groups. Overall PMNHITTIN had a lower fold change response to Mtb infection compared to PMNHIT. According to pathway enrichment, Apoptosis and NETosis were differentially regulated between HITTIN and HIT PMN responses after 6h Mtb infection. To corroborate the blunted NETosis transcriptional response measured among HITTIN, fluorescence microscopy revealed relatively lower neutrophil extracellular trap formation and cell loss in PMNHITTIN compared to PMNHIT, showing that PMNHITTIN have a distinct response to Mtb.


Asunto(s)
Trampas Extracelulares , Infecciones por VIH , Mycobacterium tuberculosis , Humanos , Ensayos de Liberación de Interferón gamma , Mycobacterium tuberculosis/genética , Tuberculina , Infecciones por VIH/complicaciones , Infecciones por VIH/genética
12.
Circulation ; 149(21): e1197-e1216, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38634276

RESUMEN

Cardiac sarcoidosis is an infiltrative cardiomyopathy that results from granulomatous inflammation of the myocardium and may present with high-grade conduction disease, ventricular arrhythmias, and right or left ventricular dysfunction. Over the past several decades, the prevalence of cardiac sarcoidosis has increased. Definitive histological confirmation is often not possible, so clinicians frequently face uncertainty about the accuracy of diagnosis. Hence, the likelihood of cardiac sarcoidosis should be thought of as a continuum (definite, highly probable, probable, possible, low probability, unlikely) rather than in a binary fashion. Treatment should be initiated in individuals with clinical manifestations and active inflammation in a tiered approach, with corticosteroids as first-line treatment. The lack of randomized clinical trials in cardiac sarcoidosis has led to treatment decisions based on cohort studies and consensus opinions, with substantial variation observed across centers. This scientific statement is intended to guide clinical practice and to facilitate management conformity by providing a framework for the diagnosis and management of cardiac sarcoidosis.


Asunto(s)
American Heart Association , Cardiomiopatías , Sarcoidosis , Humanos , Sarcoidosis/terapia , Sarcoidosis/diagnóstico , Cardiomiopatías/terapia , Cardiomiopatías/diagnóstico , Estados Unidos/epidemiología , Corticoesteroides/uso terapéutico , Manejo de la Enfermedad
13.
J Virol ; 98(4): e0193523, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38451085

RESUMEN

Placental infection plays a central role in the pathogenesis of congenital human cytomegalovirus (HCMV) infections and is a cause of fetal growth restriction and pregnancy loss. HCMV can replicate in some trophoblast cell types, but it remains unclear how the virus evades antiviral immunity in the placenta and how infection compromises placental development and function. Human trophoblast stem cells (TSCs) can be differentiated into extravillous trophoblasts (EVTs), syncytiotrophoblasts (STBs), and organoids, and this study assessed the utility of TSCs as a model of HCMV infection in the first-trimester placenta. HCMV was found to non-productively infect TSCs, EVTs, and STBs. Immunofluorescence assays and flow cytometry experiments further revealed that infected TSCs frequently only express immediate early viral gene products. Similarly, RNA sequencing found that viral gene expression in TSCs does not follow the kinetic patterns observed during lytic infection in fibroblasts. Canonical antiviral responses were largely not observed in HCMV-infected TSCs and TSC-derived trophoblasts. Rather, infection dysregulated factors involved in cell identity, differentiation, and Wingless/Integrated signaling. Thus, while HCMV does not replicate in TSCs, infection may perturb trophoblast differentiation in ways that could interfere with placental function. IMPORTANCE: Placental infection plays a central role in human cytomegalovirus (HCMV) pathogenesis during pregnancy, but the species specificity of HCMV and the limited availability and lifespan of primary trophoblasts have been persistent barriers to understanding how infection impacts this vital organ. Human trophoblast stem cells (TSCs) represent a new approach to modeling viral infection early in placental development. This study reveals that TSCs, like other stem cell types, restrict HCMV replication. However, infection perturbs the expression of genes involved in differentiation and cell fate determination, pointing to a mechanism by which HCMV could cause placental injury.


Asunto(s)
Citomegalovirus , Células Madre , Trofoblastos , Replicación Viral , Femenino , Humanos , Embarazo , Diferenciación Celular/genética , Linaje de la Célula/genética , Citomegalovirus/crecimiento & desarrollo , Citomegalovirus/patogenicidad , Citomegalovirus/fisiología , Infecciones por Citomegalovirus/patología , Infecciones por Citomegalovirus/fisiopatología , Infecciones por Citomegalovirus/virología , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Placenta/citología , Placenta/patología , Placenta/fisiopatología , Placenta/virología , Primer Trimestre del Embarazo , Células Madre/citología , Células Madre/virología , Trofoblastos/citología , Trofoblastos/virología
14.
Brief Bioinform ; 24(3)2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37096593

RESUMEN

While research into drug-target interaction (DTI) prediction is fairly mature, generalizability and interpretability are not always addressed in the existing works in this field. In this paper, we propose a deep learning (DL)-based framework, called BindingSite-AugmentedDTA, which improves drug-target affinity (DTA) predictions by reducing the search space of potential-binding sites of the protein, thus making the binding affinity prediction more efficient and accurate. Our BindingSite-AugmentedDTA is highly generalizable as it can be integrated with any DL-based regression model, while it significantly improves their prediction performance. Also, unlike many existing models, our model is highly interpretable due to its architecture and self-attention mechanism, which can provide a deeper understanding of its underlying prediction mechanism by mapping attention weights back to protein-binding sites. The computational results confirm that our framework can enhance the prediction performance of seven state-of-the-art DTA prediction algorithms in terms of four widely used evaluation metrics, including concordance index, mean squared error, modified squared correlation coefficient ($r^2_m$) and the area under the precision curve. We also contribute to three benchmark drug-traget interaction datasets by including additional information on 3D structure of all proteins contained in those datasets, which include the two most commonly used datasets, namely Kiba and Davis, as well as the data from IDG-DREAM drug-kinase binding prediction challenge. Furthermore, we experimentally validate the practical potential of our proposed framework through in-lab experiments. The relatively high agreement between computationally predicted and experimentally observed binding interactions supports the potential of our framework as the next-generation pipeline for prediction models in drug repurposing.


Asunto(s)
Algoritmos , Reposicionamiento de Medicamentos , Desarrollo de Medicamentos , Proteínas/química , Sitios de Unión
15.
Am J Pathol ; 194(1): 71-84, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37925018

RESUMEN

Alcohol-associated liver disease (ALD) is a serious public health problem with limited pharmacologic options. The goal of the current study was to investigate the efficacy of pharmacologic inhibition of soluble epoxide hydrolase (sEH), an enzyme involved in lipid metabolism, in experimental ALD, and to examine the underlying mechanisms. C57BL/6J male mice were subjected to acute-on-chronic ethanol (EtOH) feeding with or without the sEH inhibitor 4-[[trans-4-[[[[4-trifluoromethoxy phenyl]amino]carbonyl]-amino]cyclohexyl]oxy]-benzoic acid (TUCB). Liver injury was assessed by multiple end points. Liver epoxy fatty acids and dihydroxy fatty acids were measured by targeted metabolomics. Whole-liver RNA sequencing was performed, and free modified RNA bases were measured by mass spectrometry. EtOH-induced liver injury was ameliorated by TUCB treatment as evidenced by reduced plasma alanine aminotransferase levels and was associated with attenuated alcohol-induced endoplasmic reticulum stress, reduced neutrophil infiltration, and increased numbers of hepatic M2 macrophages. TUCB altered liver epoxy and dihydroxy fatty acids and led to a unique hepatic transcriptional profile characterized by decreased expression of genes involved in apoptosis, inflammation, fibrosis, and carcinogenesis. Several modified RNA bases were robustly changed by TUCB, including N6-methyladenosine and 2-methylthio-N6-threonylcarbamoyladenosine. These findings show the beneficial effects of sEH inhibition by TUCB in experimental EtOH-induced liver injury, warranting further mechanistic studies to explore the underlying mechanisms, and highlighting the translational potential of sEH as a drug target for this disease.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Hepatopatías Alcohólicas , Ratones , Animales , Masculino , Epóxido Hidrolasas/genética , Epóxido Hidrolasas/metabolismo , Transcriptoma , Ratones Endogámicos C57BL , Hepatopatías Alcohólicas/genética , Ácidos Grasos , Etanol , ARN
16.
Hepatology ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028887

RESUMEN

BACKGROUND AIMS: In a recent trial, patients with severe-alcohol-associated-hepatitis (sAH) treated with anakinra-plus-zinc (A+Z) had lower survival and higher acute-kidney-injury (AKI) rates versus prednisone (PRED). We characterize the clinical factors and potential mechanisms associated with AKI development in that trial. APPROACH RESULTS: Data from 147-participants in a multicenter randomized clinical trial (74 A+Z, 73 PRED) were analyzed. AKI, AKI-phenotypes, and kidney-injury biomarkers were compared between participants who did/did not develop AKI in the two treatment-arms. Multivariable competing-risk analyses were performed to identify baseline risk-factors for incident AKI, with death treated as a competing event. Risk-factors considered were age, sex, mean arterial pressure, white blood cell count, albumin, MELD, ascites, hepatic encephalopathy, and treatment arm. At baseline, no participants had AKI; 33% (n=49) developed AKI during follow-up. AKI incidence was higher in A+Z than PRED [45% (n=33) versus 22% (n=16), p=0.001]. AKI-phenotypes were similar between the two treatment-arms (p=0.361) but peak-AKI severity was greater in A+Z than PRED [stage-3 n=21 (63.6%) versus n=8 (50.0%), p=0.035]. At baseline, urine-neutrophil-gelatinase-associated-lipocalin (uNGAL) levels were similar between participants who developed AKI in both treatment-arms (p=0.319). However, day 7 and 14 uNGAL levels were significantly elevated in A+Z-treated participants who developed AKI versus PRED-treated participants who developed AKI (p=0.002 and p=0.032, respectively). On multivariable competing-risk analysis, only A+Z was independently associated with incident AKI (sHR 2.35, p=0.005). CONCLUSIONS: AKI occurred more frequently and was more severe in A+Z-treated participants. A+Z-treated participants with AKI had higher uNGAL, suggesting that A+Z maybe nephrotoxic in sAH patients.

17.
Acc Chem Res ; 57(8): 1202-1213, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38530881

RESUMEN

ConspectusThe preparation of discrete and well-defined polymers is an emerging strategy for emulating the remarkable precision achieved by macromolecular synthesis in nature. Although modern controlled polymerization techniques have unlocked access to a cornucopia of materials spanning a broad range of monomers, molecular weights, and architectures, the word "controlled" is not to be confused with "perfect". Indeed, even the highest-fidelity polymerization techniques─yielding molar mass dispersities in the vicinity of D = 1.05─unavoidably create a considerable degree of structural and/or compositional dispersity due to the statistical nature of chain growth. Such dispersity impacts many of the properties that researchers seek to control in the design of soft materials.The development of strategies to minimize or entirely eliminate dispersity and access molecularly precise polymers therefore remains a key contemporary challenge. While significant advances have been made in the realm of iterative synthetic methods that construct oligomers with an exact molecular weight, head-to-tail connectivity, and even stereochemistry via small-molecule organic chemistry, as the word "iterative" suggests, these techniques involve manually propagating monomers one reaction at a time, often with intervening protection and deprotection steps. As a result, these strategies are time-consuming, difficult to scale, and remain limited to lower molecular weights. The focus of this Account is on an alternative strategy that is more accessible to the general scientific community because of its simplicity, versatility, and affordability: chromatography. Researchers unfamiliar with the intricacies of synthesis may recall being exposed to chromatography in an undergraduate chemistry lab. This operationally simple, yet remarkably powerful, technique is most commonly encountered in the purification of small molecules through their selective (differential) adsorption to a column packed with a low-cost stationary phase, usually silica. Because the requisite equipment is readily available and the actual separation takes little time (on the order of 1 h), chromatography is used extensively in small-molecule chemistry throughout industry and academia alike. It is, therefore, perhaps surprising that similar types of chromatography are not more widely leveraged in the field of polymer science as well.Here, we discuss recent advances in using chromatography to control the structure and properties of polymeric materials. Emphasis is placed on the utility of an adsorption-based mechanism that separates polymers based on polarity and composition at tractable (gram) scales for materials science, in contrast to size exclusion, which is extremely common but typically analyzes very small quantities of a sample (∼1 mg) and is limited to separating by molar mass. Key concepts that are highlighted include (1) the separation of low-molecular-weight homopolymers into discrete oligomers (D = 1.0) with precise chain lengths and (2) the efficient fractionation of block copolymers into high-quality and widely varied libraries for accelerating materials discovery. In summary, the authors hope to convey the exciting possibilities in polymer science afforded by chromatography as a scalable, versatile, and even automated technique that unlocks new avenues of exploration into well-defined materials for a diverse assortment of researchers with different training and expertise.

18.
Blood ; 142(11): 989-1007, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37172199

RESUMEN

Dysregulation of innate immune signaling is a hallmark of hematologic malignancies. Recent therapeutic efforts to subvert aberrant innate immune signaling in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) have focused on the kinase IRAK4. IRAK4 inhibitors have achieved promising, though moderate, responses in preclinical studies and clinical trials for MDS and AML. The reasons underlying the limited responses to IRAK4 inhibitors remain unknown. In this study, we reveal that inhibiting IRAK4 in leukemic cells elicits functional complementation and compensation by its paralog, IRAK1. Using genetic approaches, we demonstrate that cotargeting IRAK1 and IRAK4 is required to suppress leukemic stem/progenitor cell (LSPC) function and induce differentiation in cell lines and patient-derived cells. Although IRAK1 and IRAK4 are presumed to function primarily downstream of the proximal adapter MyD88, we found that complementary and compensatory IRAK1 and IRAK4 dependencies in MDS/AML occur via noncanonical MyD88-independent pathways. Genomic and proteomic analyses revealed that IRAK1 and IRAK4 preserve the undifferentiated state of MDS/AML LSPCs by coordinating a network of pathways, including ones that converge on the polycomb repressive complex 2 complex and JAK-STAT signaling. To translate these findings, we implemented a structure-based design of a potent and selective dual IRAK1 and IRAK4 inhibitor KME-2780. MDS/AML cell lines and patient-derived samples showed significant suppression of LSPCs in xenograft and in vitro studies when treated with KME-2780 as compared with selective IRAK4 inhibitors. Our results provide a mechanistic basis and rationale for cotargeting IRAK1 and IRAK4 for the treatment of cancers, including MDS/AML.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Humanos , Quinasas Asociadas a Receptores de Interleucina-1/genética , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Proteómica , Transducción de Señal , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/genética , Leucemia Mieloide Aguda/genética
19.
Circ Res ; 133(9): 758-771, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37737016

RESUMEN

BACKGROUND: Atrial fibrillation (AF)-the most common sustained cardiac arrhythmia-increases thromboembolic stroke risk 5-fold. Although atrial hypocontractility contributes to stroke risk in AF, the molecular mechanisms reducing myofilament contractile function remain unknown. We tested the hypothesis that increased expression of PPP1R12C (protein phosphatase 1 regulatory subunit 12C)-the PP1 (protein phosphatase 1) regulatory subunit targeting MLC2a (atrial myosin light chain 2)-causes hypophosphorylation of MLC2a and results in atrial hypocontractility. METHODS: Right atrial appendage tissues were isolated from human patients with AF versus sinus rhythm controls. Western blots, coimmunoprecipitation, and phosphorylation studies were performed to examine how the PP1c (PP1 catalytic subunit)-PPP1R12C interaction causes MLC2a dephosphorylation. In vitro studies of pharmacological MRCK (myotonic dystrophy kinase-related Cdc42-binding kinase) inhibitor (BDP5290) in atrial HL-1 cells were performed to evaluate PP1 holoenzyme activity on MLC2a. Cardiac-specific lentiviral PPP1R12C overexpression was performed in mice to evaluate atrial remodeling with atrial cell shortening assays, echocardiography, and AF inducibility with electrophysiology studies. RESULTS: In human patients with AF, PPP1R12C expression was increased 2-fold versus sinus rhythm controls (P=2.0×10-2; n=12 and 12 in each group) with >40% reduction in MLC2a phosphorylation (P=1.4×10-6; n=12 and 12 in each group). PPP1R12C-PP1c binding and PPP1R12C-MLC2a binding were significantly increased in AF (P=2.9×10-2 and 6.7×10-3, respectively; n=8 and 8 in each group). In vitro studies utilizing drug BDP5290, which inhibits T560-PPP1R12C phosphorylation, demonstrated increased PPP1R12C binding with both PP1c and MLC2a and dephosphorylation of MLC2a. Mice treated with lentiviral PPP1R12C vector demonstrated a 150% increase in left atrial size versus controls (P=5.0×10-6; n=12, 8, and 12), with reduced atrial strain and atrial ejection fraction. Pacing-induced AF in mice treated with lentiviral PPP1R12C vector was significantly higher than in controls (P=1.8×10-2 and 4.1×10-2, respectively; n=6, 6, and 5). CONCLUSIONS: Patients with AF exhibit increased levels of PPP1R12C protein compared with controls. PPP1R12C overexpression in mice increases PP1c targeting to MLC2a and causes MLC2a dephosphorylation, which reduces atrial contractility and increases AF inducibility. These findings suggest that PP1 regulation of sarcomere function at MLC2a is a key determinant of atrial contractility in AF.


Asunto(s)
Fibrilación Atrial , Proteína Fosfatasa 1 , Accidente Cerebrovascular , Animales , Humanos , Ratones , Fibrilación Atrial/metabolismo , Atrios Cardíacos/metabolismo , Fosforilación , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo
20.
Am J Respir Crit Care Med ; 209(4): 362-373, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38113442

RESUMEN

Despite progress in elucidation of disease mechanisms, identification of risk factors, biomarker discovery, and the approval of two medications to slow lung function decline in idiopathic pulmonary fibrosis and one medication to slow lung function decline in progressive pulmonary fibrosis, pulmonary fibrosis remains a disease with a high morbidity and mortality. In recognition of the need to catalyze ongoing advances and collaboration in the field of pulmonary fibrosis, the NHLBI, the Three Lakes Foundation, and the Pulmonary Fibrosis Foundation hosted the Pulmonary Fibrosis Stakeholder Summit on November 8-9, 2022. This workshop was held virtually and was organized into three topic areas: 1) novel models and research tools to better study pulmonary fibrosis and uncover new therapies, 2) early disease risk factors and methods to improve diagnosis, and 3) innovative approaches toward clinical trial design for pulmonary fibrosis. In this workshop report, we summarize the content of the presentations and discussions, enumerating research opportunities for advancing our understanding of the pathogenesis, treatment, and outcomes of pulmonary fibrosis.


Asunto(s)
Investigación Biomédica , Fibrosis Pulmonar Idiopática , Estados Unidos , Humanos , National Heart, Lung, and Blood Institute (U.S.) , Lagos , Fibrosis Pulmonar Idiopática/diagnóstico , Fibrosis Pulmonar Idiopática/terapia , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA