Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mutat Res ; 588(2): 158-65, 2005 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-16298157

RESUMEN

Dibenzo[a,l]pyrene (DB[a,l]P) induces abundant amounts of depurinating adducts that spontaneously dissociate to form abasic sites in DNA. However, several previous studies that used the aldehyde-reactive probe (ARP) assay, could not verify abasic site formation by DB[a,l]P. Therefore, we examined whether a modification of the ARP assay would allow greater quantification of abasic sites. A previous study indicated that the abasic site quantification is improved by letting ARP trap the nascent abasic sites in cells, before extracting DNA for the assay. To test whether the addition of ARP to the DB[a,l]P-DNA adduct-forming reaction would improve abasic site quantification, we treated calf thymus DNA (0.625 mg/mL) with DB[a,l]P (80 microM) and 3-methylcholanthrene-treated rat liver microsomes with or without ARP (3 mM). The inclusion of ARP in the adduct-forming reaction resulted in significantly greater detection of abasic sites (62 lesions/10(6) bp versus 3.7 lesions/10(6) bp). DB[a,l]P also induces DNA strand breaks. The strand breaks may occur at abasic sites and by other mechanisms, such as oxidative damage. ARP/O-methoxyamine-abasic site conjugates are refractory to strand breakage, however, ARP or O-methoxyamine (3-10 mM) could only partially protect DB[a,l]P-induced DNA degradation, presumably by protecting the abasic sites, but not the other strand breaks. These results suggest that if DNA strand breakages occur at the abasic sites or at bases flanking them, and the fragments are lost during DNA extraction, abasic site estimation could be compromised. To obtain an independent line of evidence for abasic site formation in DB[a,l]P-treated cells, mouse Mbeta16 fibroblasts were treated with DB[a,l]P and O-methoxyamine. O-Methoxyamine is known to potentiate cytotoxicity of abasic site-inducing chemicals by forming abasic site conjugates, which partially inhibits their repair. O-Methoxyamine was found to increase DB[a,l]P cytotoxicity in these cells, supporting the idea that DB[a,l]P formed abasic sites. In summary, the inclusion of ARP in the DB[a,l]P-DNA adduct-forming reaction traps and protects the nascent abasic sites, allowing an improved quantification of abasic sites.


Asunto(s)
Benzopirenos/toxicidad , Carcinógenos/toxicidad , Aductos de ADN/análisis , Sondas Moleculares/farmacología , Pruebas de Mutagenicidad , Aldehídos/farmacología , Animales , Bioensayo , ADN/química , ADN/efectos de los fármacos , Daño del ADN , Fibroblastos/efectos de los fármacos , Hidroxilaminas/farmacología , Ratones , Microsomas Hepáticos/efectos de los fármacos , Nucleótidos/química , Ratas
2.
Gene ; 285(1-2): 149-56, 2002 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-12039041

RESUMEN

ras GTPase activating protein (rasGAP) is highly conserved among mammalian species and is required for normal cardiovascular system development. Expression of this protein exhibits both quantitative and qualitative variability among tissues. Using a combination of DNA sequencing and database analyses, we have determined that the human rasGAP gene spans 122 kb and is composed of 25 exons; the size of each intron and the intron/exon junctions also have been elucidated. With one exception, all intron/exon boundaries conform to the GT/AG rule; the splice donor site of intron 3 is GC/AG. Results of RNA ligase mediated rapid amplification of cDNA ends followed by sequence determination indicate that the transcription start point (TSP) is approximately 588 bp upstream from the translational start site and is uninterrupted by introns; this extremely long 5' untranslated region is continuous with the first coding exon. Analysis of 1 kb of sequence upstream of the TSP did not identify any of the typical promoter elements (TATA or CAAT boxes). Sequential deletions of this 1 kb region followed by secreted alkaline phosphatase reporter gene analysis revealed that transcription is supported by this region of the rasGAP gene. Because the highest efficiency is demonstrated by a 213 bp sequence just upstream from the TSP (-786 to -584), this region is identified as containing the rasGAP minimal promoter. Sequence analysis of this 213 bp sequence shows few candidate sites for transcription factor binding. A 406 bp fragment surrounding the TSP exhibits characteristics of a CpG island (68% C+G; observed/expected ratio of CpG=0.95). RapidScan analysis revealed that high levels of rasGAP transcript are present in placenta and testis, but transcript is not detectable in kidney and intestinal tract. These data suggest that rasGAP transcription is regulated by an atypical mechanism capable of producing quantitative variability among tissue types.


Asunto(s)
Proteínas Activadoras de ras GTPasa/genética , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Secuencia de Bases , Islas de CpG/genética , ADN/química , ADN/genética , Exones , Femenino , Regulación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genes/genética , Células HeLa , Humanos , Intrones , Masculino , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Análisis de Secuencia de ADN , Sitio de Iniciación de la Transcripción , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA