Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 288(30): 21755-69, 2013 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-23760278

RESUMEN

Response regulator proteins within two-component signal transduction systems are activated by phosphorylation and can catalyze their own covalent phosphorylation using small molecule phosphodonors. To date, comprehensive kinetic characterization of response regulator autophosphorylation is limited to CheY, which follows a simple model of phosphodonor binding followed by phosphorylation. We characterized autophosphorylation of the response regulator PhoB, known to dimerize upon phosphorylation. In contrast to CheY, PhoB time traces exhibited an initial lag phase and gave apparent pseudo-first order rate constants that increased with protein concentration. Furthermore, plots of the apparent autophosphorylation rate constant versus phosphodonor concentration were sigmoidal, as were PhoB binding isotherms for the phosphoryl group analog BeF3(-). Successful mathematical modeling of the kinetic data necessitated inclusion of the formation of a PhoB heterodimer (one phosphorylated and one unphosphorylated monomer) with an enhanced rate of phosphorylation. Specifically, dimerization constants for the PhoB heterodimer and homodimer (two phosphorylated monomers) were similar, but the rate constant for heterodimer phosphorylation was ~10-fold higher than for the monomer. In a test of the model, disruption of the known PhoB(N) dimerization interface by mutation led to markedly slower and noncooperative autophosphorylation kinetics. Furthermore, phosphotransfer from the sensor kinase PhoR was enhanced by dimer formation. Phosphorylation-mediated dimerization allows many response regulators to bind to tandem DNA-binding sites and regulate transcription. Our data challenge the notion that response regulator dimers primarily form between two phosphorylated monomers and raise the possibility that response regulator heterodimers containing one phosphoryl group may participate in gene regulation.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Multimerización de Proteína , Algoritmos , Proteínas Bacterianas/genética , Berilio/química , Berilio/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli , Fluoruros/química , Fluoruros/metabolismo , Cinética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo , Modelos Biológicos , Modelos Químicos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Fosforilación , Unión Proteica , Estructura Secundaria de Proteína
2.
J Am Chem Soc ; 132(1): 321-7, 2010 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-20050707

RESUMEN

Although overexpression and (15)N enrichment facilitate the observation of resonances from disordered proteins in Escherichia coli, (15)N enrichment alone is insufficient for detecting most globular proteins. Here, we explain this dichotomy and overcome the problem while extending the capability of in-cell NMR by using (19)F-labeled proteins. Resonances from small (approximately 10 kDa) globular proteins containing the amino acid analogue 3-fluoro-tyrosine can be observed in cells, but for larger proteins the (19)F resonances are broadened beyond detection. Incorporating the amino acid analogue trifluoromethyl-L-phenylalanine allows larger proteins (up to 100 kDa) to be observed in cells. We also show that site-specific structural and dynamic information about both globular and disordered proteins can be obtained inside cells by using (19)F NMR.


Asunto(s)
Escherichia coli/química , Proteínas/química , Quimotripsina/antagonistas & inhibidores , Quimotripsina/química , Quimotripsina/metabolismo , Halogenación , Peso Molecular , Resonancia Magnética Nuclear Biomolecular , Inhibidores de Proteasas/farmacología , Proteínas/genética , Proteínas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Methods Enzymol ; 471: 89-114, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20946844

RESUMEN

Two-component regulatory systems, comprising sensor kinase and response regulator proteins, carry out signal transduction in prokaryotic and eukaryotic microorganisms, as well as plants. Response regulators act as phosphorylation-mediated switches, turning on and off cellular responses to environmental stimuli. Self-catalyzed dephosphorylation is an important determinant of the duration of the response regulator activated state. Reported response regulator autodephosphorylation rates vary over almost a million-fold range, consistent with control of biological processes that occur on widely different timescales. We describe general considerations for the design and execution of in vitro assays to measure the autodephosphorylation rates of purified response regulator proteins, as well as specific methods that utilize loss of 32P, changes in fluorescence, or release of inorganic phosphate. The advantages and disadvantages of different methods are discussed, including suitability for different timescales. In addition to outlining established methods, an assay modification is proposed to measure fast autodephosphorylation rates with radioactivity, and optimization of the fluorescence/pH jump method is described.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Fosfatos/metabolismo , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA