Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Thyroid ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39189416

RESUMEN

Background: It has long been known that thyroid disease can lead to changes in energy metabolism, thermoregulation, and anxiety behavior. While these actions have been partially attributed to thyroid hormone (TH) receptor α1 (TRα1) action in the brain, the precise neuroanatomical substrates have remain elusive. Methods: We used PET-CT scans to identify brain regions affected by TH. We then inhibited TRα1 signaling specifically in the most affected region, the zona incerta (ZI), a still mysterious region previously implicated in thermogenesis and anxiety. To this end, we used an adeno-associated virus (AAV) expressing a dominant-negative TRα1R384C in wild-type mice and phenotyped the animals. Finally, we used tyrosine hydroxylase-Cre mice to test specifically the contribution of ZI dopaminergic neurons. Results: Our data showed that AAV-mediated inhibition of TRα1 signaling in the ZI lead to increased energy expenditure at thermoneutrality, while body temperature regulation remained unaffected. Moreover, circulating glucocorticoid levels were increased, and a mild habituation problem was observed in the open field test. No effects were observed when TRα1 signaling was selectively inhibited in dopaminergic neurons. Conclusions: Our findings suggest that altered TH signaling in the ZI is not involved in body temperature regulation but can affect basal metabolism and modulates stress responses.

2.
Nat Metab ; 6(3): 473-493, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38378998

RESUMEN

Agouti-related peptide (AgRP)-expressing and proopiomelanocortin (POMC)-expressing neurons reciprocally regulate food intake. Here, we combine non-interacting recombinases to simultaneously express functionally opposing chemogenetic receptors in AgRP and POMC neurons for comparing metabolic responses in male and female mice with simultaneous activation of AgRP and inhibition of POMC neurons with isolated activation of AgRP neurons or isolated inhibition of POMC neurons. We show that food intake is regulated by the additive effect of AgRP neuron activation and POMC neuron inhibition, while systemic insulin sensitivity and gluconeogenesis are differentially modulated by isolated-versus-simultaneous regulation of AgRP and POMC neurons. We identify a neurocircuit engaging Npy1R-expressing neurons in the paraventricular nucleus of the hypothalamus, where activated AgRP neurons and inhibited POMC neurons cooperate to promote food consumption and activate Th+ neurons in the nucleus tractus solitarii. Collectively, these results unveil how food intake is precisely regulated by the simultaneous bidirectional interplay between AgRP and POMC neurocircuits.


Asunto(s)
Neuronas , Proopiomelanocortina , Ratones , Masculino , Femenino , Animales , Proopiomelanocortina/metabolismo , Proteína Relacionada con Agouti/metabolismo , Neuronas/metabolismo , Hipotálamo/metabolismo
3.
Cell Metab ; 33(7): 1466-1482.e7, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34043943

RESUMEN

Sensory neurons relay gut-derived signals to the brain, yet the molecular and functional organization of distinct populations remains unclear. Here, we employed intersectional genetic manipulations to probe the feeding and glucoregulatory function of distinct sensory neurons. We reconstruct the gut innervation patterns of numerous molecularly defined vagal and spinal afferents and identify their downstream brain targets. Bidirectional chemogenetic manipulations, coupled with behavioral and circuit mapping analysis, demonstrated that gut-innervating, glucagon-like peptide 1 receptor (GLP1R)-expressing vagal afferents relay anorexigenic signals to parabrachial nucleus neurons that control meal termination. Moreover, GLP1R vagal afferent activation improves glucose tolerance, and their inhibition elevates blood glucose levels independent of food intake. In contrast, gut-innervating, GPR65-expressing vagal afferent stimulation increases hepatic glucose production and activates parabrachial neurons that control normoglycemia, but they are dispensable for feeding regulation. Thus, distinct gut-innervating sensory neurons differentially control feeding and glucoregulatory neurocircuits and may provide specific targets for metabolic control.


Asunto(s)
Regulación del Apetito , Eje Cerebro-Intestino/fisiología , Glucosa/metabolismo , Células Receptoras Sensoriales/fisiología , Vías Aferentes/metabolismo , Animales , Apetito/fisiología , Regulación del Apetito/genética , Comunicación Celular/genética , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Receptor del Péptido 1 Similar al Glucagón/genética , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Ratones Transgénicos , Ganglio Nudoso/metabolismo , Ganglio Nudoso/fisiología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Nervio Vago/metabolismo , Nervio Vago/fisiología , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
4.
Nat Metab ; 3(12): 1662-1679, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34931084

RESUMEN

Insulin acts on neurons and glial cells to regulate systemic glucose metabolism and feeding. However, the mechanisms of insulin access in discrete brain regions are incompletely defined. Here we show that insulin receptors in tanycytes, but not in brain endothelial cells, are required to regulate insulin access to the hypothalamic arcuate nucleus. Mice lacking insulin receptors in tanycytes (IR∆Tan mice) exhibit systemic insulin resistance, while displaying normal food intake and energy expenditure. Tanycytic insulin receptors are also necessary for the orexigenic effects of ghrelin, but not for the anorexic effects of leptin. IR∆Tan mice exhibit increased agouti-related peptide (AgRP) neuronal activity, while displaying blunted AgRP neuronal adaptations to feeding-related stimuli. Lastly, a highly palatable food decreases tanycytic and arcuate nucleus insulin signalling to levels comparable to those seen in IR∆Tan mice. These changes are rooted in modifications of cellular stress responses and of mitochondrial protein quality control in tanycytes. Conclusively, we reveal a critical role of tanycyte insulin receptors in gating feeding-state-dependent regulation of AgRP neurons and systemic insulin sensitivity, and show that insulin resistance in tanycytes contributes to the pleiotropic manifestations of obesity-associated insulin resistance.


Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Células Ependimogliales/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Neuronas/metabolismo , Transducción de Señal , Proteína Relacionada con Agouti/química , Animales , Biomarcadores , Barrera Hematoencefálica/metabolismo , Calcio , Metabolismo Energético , Técnica del Anticuerpo Fluorescente , Ghrelina/metabolismo , Glucosa/metabolismo , Resistencia a la Insulina , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Modelos Biológicos , Fragmentos de Péptidos/metabolismo , Receptor de Insulina/metabolismo
5.
Cell Metab ; 31(6): 1189-1205.e13, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32433922

RESUMEN

Astrocytes represent central regulators of brain glucose metabolism and neuronal function. They have recently been shown to adapt their function in response to alterations in nutritional state through responding to the energy state-sensing hormones leptin and insulin. Here, we demonstrate that glucagon-like peptide (GLP)-1 inhibits glucose uptake and promotes ß-oxidation in cultured astrocytes. Conversely, postnatal GLP-1 receptor (GLP-1R) deletion in glial fibrillary acidic protein (GFAP)-expressing astrocytes impairs astrocyte mitochondrial integrity and activates an integrated stress response with enhanced fibroblast growth factor (FGF)21 production and increased brain glucose uptake. Accordingly, central neutralization of FGF21 or astrocyte-specific FGF21 inactivation abrogates the improvements in glucose tolerance and learning in mice lacking GLP-1R expression in astrocytes. Collectively, these experiments reveal a role for astrocyte GLP-1R signaling in maintaining mitochondrial integrity, and lack of GLP-1R signaling mounts an adaptive stress response resulting in an improvement of systemic glucose homeostasis and memory formation.


Asunto(s)
Astrocitos/metabolismo , Ácidos Grasos/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Mitocondrias/metabolismo , Animales , Femenino , Receptor del Péptido 1 Similar al Glucagón/deficiencia , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Oxidación-Reducción , Transducción de Señal
6.
Neuron ; 106(6): 1009-1025.e10, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32302532

RESUMEN

Calorie-rich diets induce hyperphagia and promote obesity, although the underlying mechanisms remain poorly defined. We find that short-term high-fat-diet (HFD) feeding of mice activates prepronociceptin (PNOC)-expressing neurons in the arcuate nucleus of the hypothalamus (ARC). PNOCARC neurons represent a previously unrecognized GABAergic population of ARC neurons distinct from well-defined feeding regulatory AgRP or POMC neurons. PNOCARC neurons arborize densely in the ARC and provide inhibitory synaptic input to nearby anorexigenic POMC neurons. Optogenetic activation of PNOCARC neurons in the ARC and their projections to the bed nucleus of the stria terminalis promotes feeding. Selective ablation of these cells promotes the activation of POMC neurons upon HFD exposure, reduces feeding, and protects from obesity, but it does not affect food intake or body weight under normal chow consumption. We characterize PNOCARC neurons as a novel ARC neuron population activated upon palatable food consumption to promote hyperphagia.


Asunto(s)
Núcleo Arqueado del Hipotálamo/fisiología , Dieta Alta en Grasa , Conducta Alimentaria/fisiología , Neuronas GABAérgicas/fisiología , Hiperfagia , Obesidad , Aumento de Peso/fisiología , Animales , Núcleo Arqueado del Hipotálamo/citología , Núcleo Arqueado del Hipotálamo/metabolismo , Neuronas GABAérgicas/metabolismo , Ratones , Inhibición Neural/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Optogenética , Proopiomelanocortina/metabolismo , Precursores de Proteínas/metabolismo , Receptores Opioides/metabolismo , Núcleos Septales/fisiología
7.
Cell Metab ; 29(3): 695-706.e4, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30595479

RESUMEN

Pleasant taste and nutritional value guide food selection behavior. Here, orosensory features of food may be secondary to its nutritional value in underlying reinforcement, but it is unclear how the brain encodes the reward value of food. Orosensory and peripheral physiological signals may act together on dopaminergic circuits to drive food intake. We combined fMRI and a novel [11C]raclopride PET method to assess systems-level activation and dopamine release in response to palatable food intake in humans. We identified immediate orosensory and delayed post-ingestive dopamine release. Both responses recruit segregated brain regions: specialized integrative pathways and higher cognitive centers. Furthermore, we identified brain areas where dopamine release reflected the subjective desire to eat. Immediate dopamine release in these wanting-related regions was inversely correlated with, and presumably inhibited, post-ingestive release in the dorsal striatum. Our results highlight the role of brain and periphery in interacting to reinforce food intake in humans.


Asunto(s)
Encéfalo/metabolismo , Dopamina/metabolismo , Ingestión de Alimentos/fisiología , Preferencias Alimentarias/fisiología , Gusto/fisiología , Adulto , Anciano , Voluntarios Sanos , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad
8.
Nat Commun ; 10(1): 336, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30659189

RESUMEN

To date, the spatiotemporal release of specific neurotransmitters at physiological levels in the human brain cannot be detected. Here, we present a method that relates minute-by-minute fluctuations of the positron emission tomography (PET) radioligand [11C]raclopride directly to subsecond dopamine release events. We show theoretically that synaptic dopamine release induces low frequency temporal variations of extrasynaptic extracellular dopamine levels, at time scales of one minute, that can evoke detectable temporal variations in the [11C]raclopride signal. Hence, dopaminergic activity can be monitored via temporal fluctuations in the [11C]raclopride PET signal. We validate this theory using fast-scan cyclic voltammetry and [11C]raclopride PET in mice during chemogenetic activation of dopaminergic neurons. We then apply the method to data from human subjects given a palatable milkshake and discover immediate and-for the first time-delayed food-induced dopamine release. This method enables time-dependent regional monitoring of stimulus-evoked dopamine release at physiological levels.


Asunto(s)
Dopamina/metabolismo , Neuronas/metabolismo , Racloprida/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/cirugía , Ingestión de Alimentos , Estimulación Eléctrica , Electrodos , Femenino , Humanos , Masculino , Ratones , Modelos Biológicos , Tomografía de Emisión de Positrones/métodos , Ensayo de Unión Radioligante , Lóbulo Temporal/metabolismo , Lóbulo Temporal/cirugía , Factores de Tiempo
9.
Cell Rep ; 27(11): 3385-3400.e3, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31189119

RESUMEN

Regulation of body temperature critically depends on thyroid hormone (TH). Recent studies revealed that TH induces browning of white adipose tissue, possibly contributing to the observed hyperthermia in hyperthyroid patients and potentially providing metabolic benefits. Here, we show that browning by TH requires TH-receptor ß and occurs independently of the sympathetic nervous system. The beige fat, however, lacks sufficient adrenergic stimulation and is not metabolically activated despite high levels of uncoupling protein 1 (UCP1). Studies at different environmental temperatures reveal that TH instead causes hyperthermia by actions in skeletal muscle combined with a central body temperature set-point elevation. Consequently, the metabolic and thermogenic effects of systemic hyperthyroidism were maintained in UCP1 knockout mice, demonstrating that neither beige nor brown fat contributes to the TH-induced hyperthermia and elevated glucose consumption, and underlining that the mere presence of UCP1 is insufficient to draw conclusions on the therapeutic potential of browning agents.


Asunto(s)
Tejido Adiposo Beige/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Glucosa/metabolismo , Termogénesis , Hormonas Tiroideas/metabolismo , Tejido Adiposo Beige/fisiología , Tejido Adiposo Pardo/fisiología , Tejido Adiposo Blanco/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
10.
J Phys Chem B ; 120(25): 5670-7, 2016 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-27228166

RESUMEN

In this work, we illustrate a method to continuously hyperpolarize a biomolecule, nicotinamide, in water using parahydrogen and signal amplification by reversible exchange (SABRE). Building on the preparation procedure described recently by Truong et al. [ J. Phys. Chem. B , 2014 , 118 , 13882 - 13889 ], aqueous solutions of nicotinamide and an Ir-IMes catalyst were prepared for low-field NMR and MRI. The (1)H-polarization was continuously renewed and monitored by NMR experiments at 5.9 mT for more than 1000 s. The polarization achieved corresponds to that induced by a 46 T magnet (P = 1.6 × 10(-4)) or an enhancement of 10(4). The polarization persisted, although reduced, if cell culture medium (DPBS with Ca(2+) and Mg(2+)) or human cells (HL-60) were added, but was no longer observable after the addition of human blood. Using a portable MRI unit, fast (1)H-MRI was enabled by cycling the magnetic field between 5 mT and the Earth's field for hyperpolarization and imaging, respectively. A model describing the underlying spin physics was developed that revealed a polarization pattern depending on both contact time and magnetic field. Furthermore, the model predicts an opposite phase of the dihydrogen and substrate signal after one exchange, which is likely to result in the cancelation of some signal at low field.


Asunto(s)
Imagen por Resonancia Magnética , Niacinamida/química , Agua/química , Células Sanguíneas/química , Células Sanguíneas/citología , Células Sanguíneas/metabolismo , Catálisis , Complejos de Coordinación/química , Óxido de Deuterio/química , Células HL-60 , Humanos , Hidrógeno/química , Iridio/química , Campos Magnéticos , Espectroscopía de Resonancia Magnética , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA