Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Pathog ; 19(12): e1011576, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38109366

RESUMEN

Mucosal immunity is critical to host protection from enteric pathogens and must be carefully controlled to prevent immunopathology. Regulation of immune responses can occur through a diverse range of mechanisms including bi-directional communication with neurons. Among which include specialized sensory neurons that detect noxious stimuli due to the expression of transient receptor potential vanilloid receptor 1 (TRPV1) ion channel and have a significant role in the coordination of host-protective responses to enteric bacterial pathogens. Here we have used the mouse-adapted attaching and effacing pathogen Citrobacter rodentium to assess the specific role of TRPV1 in coordinating the host response. TRPV1 knockout (TRPV1-/-) mice had a significantly higher C. rodentium burden in the distal colon and fecal pellets compared to wild-type (WT) mice. Increased bacterial burden was correlated with significantly increased colonic crypt hyperplasia and proliferating intestinal epithelial cells in TRPV1-/- mice compared to WT. Despite the increased C. rodentium burden and histopathology, the recruitment of colonic T cells producing IFNγ, IL-17, or IL-22 was similar between TRPV1-/- and WT mice. In evaluating the innate immune response, we identified that colonic neutrophil recruitment in C. rodentium infected TRPV1-/- mice was significantly reduced compared to WT mice; however, this was independent of neutrophil development and maturation within the bone marrow compartment. TRPV1-/- mice were found to have significantly decreased expression of the neutrophil-specific chemokine Cxcl6 and the adhesion molecules Icam1 in the distal colon compared to WT mice. Corroborating these findings, a significant reduction in ICAM-1 and VCAM-1, but not MAdCAM-1 protein on the surface of colonic blood endothelial cells from C. rodentium infected TRPV1-/- mice compared to WT was observed. These findings demonstrate the critical role of TRPV1 in regulating the host protective responses to enteric bacterial pathogens, and mucosal immune responses.


Asunto(s)
Infecciones por Enterobacteriaceae , Mucosa Intestinal , Ratones , Animales , Mucosa Intestinal/metabolismo , Colon/patología , Citrobacter rodentium , Células Endoteliales/metabolismo , Inmunidad Innata , Ratones Endogámicos C57BL , Ratones Noqueados , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
2.
Am J Physiol Lung Cell Mol Physiol ; 324(1): L53-L63, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36410021

RESUMEN

It is becoming increasingly appreciated that the nervous and immune systems communicate bidirectionally to regulate immunological outcomes in a variety of organs including the lung. Activation of neuronal signaling can be induced by inflammation, tissue damage, or pathogens to evoke or reduce immune cell activation in what has been termed a neuroimmune reflex. In the periphery, these reflexes include the cholinergic anti-inflammatory pathway, sympathetic reflex, and sensory nociceptor-immune cell pathways. Continual advances in neuroimmunology in peripheral organ systems have fueled small-scale clinical trials that have yielded encouraging results for a range of immunopathologies such as rheumatoid arthritis. Despite these successes, several limitations should give clinical investigators pause in the application of neural stimulation as a therapeutic for lung inflammation, especially if inflammation arises from a novel pathogen. In this review, the general mechanisms of each reflex, the evidence for these circuits in the control of lung inflammation, and the key knowledge gaps in our understanding of these neuroimmune circuits will be discussed. These limitations can be overcome not only through a better understanding of neuroanatomy but also through a systematic evaluation of stimulation parameters using immune activation in lung tissues as primary readouts. Our rapidly evolving understanding of the nervous and immune systems highlights the importance of communication between these cells in health and disease. This integrative approach has tremendous potential in the development of targeted therapeutics if specific challenges can be overcome.


Asunto(s)
Artritis Reumatoide , Neumonía , Humanos , Inflamación/metabolismo
3.
bioRxiv ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38979288

RESUMEN

Immune responses in the intestine are intricately balanced to prevent pathogen entry without inducing immunopathology. The nervous system is well-established to interface with the immune system to fine-tune immunity in various organ systems including the gastrointestinal tract. Specialized sensory neurons can detect bacteria, bacterial products, and the resulting inflammation, to coordinate the immune response in the gastrointestinal tract. These sensory neurons release peptide neurotransmitters such as Substance P (SP), to induce both neuronal signaling and localized responses in non-neuronal cells. With this in mind, we assessed the immunoregulatory roles of SP receptor signaling during enteric bacterial infection with the non-invasive pathogen Citrobacter rodentium. Pharmacological antagonism of the SP receptor significantly reduced bacterial burden and prevented colonic crypt hyperplasia. Mice with SP receptor signaling blockade had significantly reduced inflammation and recruitment of T-cells in the colon. Reduced colonic T-cell recruitment is due to reduced expression of adhesion molecules on colonic endothelial cells in SP receptor antagonist-treated mice. Using SP receptor T-cell conditional knockout mice, we further confirmed SP receptor signaling enhanced select aspects of T-cell responses. Our data demonstrates that SP receptor signaling can significantly reduce inflammation and prevent host-maladaptive responses without impinging upon host protection.

4.
Mol Cancer Ther ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38670552

RESUMEN

Delta-like ligand 3 (DLL3) is expressed in more than 70% of small cell lung cancers (SCLCs) and other neuroendocrine-derived tumor types. SCLC is highly aggressive and limited therapeutic options lead to poor prognosis for patients. HPN328 is a tri-specific T cell activating construct (TriTAC) consisting of three binding domains: a CD3 binder for T cell engagement, an albumin binder for half-life extension, and a DLL3 binder for tumor cell engagement. In vitro assays, rodent models and non-human primates were used to assess the activity of HPN328. HPN328 induces potent dose-dependent killing of DLL3-expressing SCLC cell lines in vitro concomitant with T cell activation and cytokine release. In an NCI-H82 xenograft model with established tumors, HPN328 treatment led to T cell recruitment and anti-tumor activity. In an immunocompetent mouse model expressing a human CD3ε epitope, mice previously treated with HPN328 withstood tumor rechallenge, demonstrating long-term anti-tumor immunity. When repeat doses were administered to cynomolgus monkeys, HPN328 was well tolerated up to 10 mg/kg. Pharmacodynamic changes, such as transient cytokine elevation, were observed, consistent with the expected mechanism of action of T cell engagers. HPN328 exhibited linear pharmacokinetic in the given dose range with a serum half-life of 78 to 187 hours, supporting weekly or less frequent administration of HPN328 in humans. Preclinical and nonclinical characterization suggests that HPN328 is a highly efficacious, safe, and novel therapeutic candidate. A phase 1/2 clinical trial is currently underway testing safety and efficacy in patients with DLL3 expressing malignancies.

5.
bioRxiv ; 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37546968

RESUMEN

Mucosal immunity is critical to host protection from enteric pathogens and must be carefully controlled to prevent immunopathology. Regulation of immune responses can occur through a diverse range of mechanisms including bi-directional communication with the neurons. Among which include specialized sensory neurons that detect noxious stimuli due to the expression of transient receptor potential vanilloid receptor 1 (TRPV1) ion channel and have a significant role in the coordination of host-protective responses to enteric bacterial pathogens. Here we have used the mouse-adapted attaching and effacing pathogen Citrobacter rodentium to assess the specific role of the TRPV1 channel in coordinating the host response. TRPV1 knockout (TRPV1-/-) mice had a significantly higher C. rodentium burden in the distal colon and fecal pellets compared to wild-type (WT) mice. Increased bacterial burden was correlated with significantly increased colonic crypt hyperplasia and proliferating intestinal epithelial cells in TRPV1-/- mice compared to WT. Despite the increased C. rodentium burden and histopathology, the recruitment of colonic T cells producing IFNγ, IL-17, or IL-22 was similar between TRPV1-/- and WT mice. In evaluating the innate immune response, we identified that colonic neutrophil recruitment in C. rodentium infected TRPV1-/- mice was significantly reduced compared to WT mice; however, this was independent of neutrophil development and maturation within the bone marrow compartment. TRPV1-/- mice were found to have significantly decreased expression of the neutrophil-specific chemokine Cxcl6 and the adhesion molecules Icam1 in the distal colon compared to WT mice. Corroborating these findings, a significant reduction in ICAM-1 and VCAM-1, but not MAdCAM-1 protein on the surface of colonic blood endothelial cells from C. rodentium infected TRPV1-/- mice compared to WT was observed. These findings demonstrate the critical role of TRPV1 in regulating the host protective responses to enteric bacterial pathogens, and mucosal immune responses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA