Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Stereotact Funct Neurosurg ; 100(1): 53-60, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34818656

RESUMEN

BACKGROUND: Radiosurgery has demonstrated good safety and efficacy in the treatment of multiple brain metastases (BMs). However, multi-target dose planning can be challenging and time-consuming. A recently developed real-time inverse treatment planning (IP) by convex optimization has been demonstrated to produce high-quality treatment plans with good conformity and selectivity in single-target plans. We intended to test the capacity of this IP to rapidly generate efficient plans while optimizing the preservation of normal tissue in multiple BM. METHODS: Seventy-nine patients (mean age 62.4, age range 22-85) with a total of 272 BMs were treated by Gamma Knife Radiosurgery. All subjects were treated using a forward planning (FP) technique by an expert neurosurgeon. The new Intuitive Plan was applied and able to automatically generate an alternative plan for each patient. All planning variables were collected from the IP to be compared with the corresponding measurements obtained from the FP. A paired sample t test was applied to compare the 2 plans for the following variables: brain volumes receiving 10 Gy (V10) (primary endpoint), and 12 Gy (V12), planning indices (selectivity, coverage, gradient, and Paddick Conformity Index [PCI]), beam-on time (BOT), and integral doses. Additionally, the noninferiority margin for each item was calculated, and the 2 plans were compared for noninferiority using a paired t test. RESULTS: The mean age of patients was 62.4 years old (age range 22-85), with a sex ratio of 1.02. The average number of lesions per patient was 3.4 (range 1-12). The mean prescription dose was 21.46 Gy (range 14-24 Gy). Noninferiority of the IP was concluded for V10, V12, prescription isodose volume, BOT, PCI, and selectivity. The V10 (and V12) was significantly lower with the IP (p < 0.001). These volumes were 8.69 cm3 ± 11.39 and 5.47 cm3 ± 7.03, respectively, for the FP and 7.57 cm3 ± 9.44 and 4.78 cm3 ± 5.86 for the IP. Only the coverage was significantly lower with the IP (-2.3%, p < 0.001), but both selectivity (+17%) and PCI (+15%) were significantly higher with the IP than FP (p < 0.001). CONCLUSION: This IP demonstrated its capacity to generate multi-target plans rapidly, with a dose to the brain (V10) and BOT noninferior to the one of a human expert planner. These results would benefit from confirmation in a larger prospective series.


Asunto(s)
Neoplasias Encefálicas , Intervención Coronaria Percutánea , Radiocirugia , Adulto , Anciano , Anciano de 80 o más Años , Encéfalo/patología , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirugía , Humanos , Persona de Mediana Edad , Estudios Prospectivos , Radiocirugia/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Adulto Joven
2.
Stereotact Funct Neurosurg ; 99(5): 387-392, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33684913

RESUMEN

Essential tremor (ET) is the most common movement disorder. Deep brain stimulation is the current gold standard for drug-resistant tremor, followed by radiofrequency lesioning. Stereotactic radiosurgery by Gamma Knife (GK) is considered as a minimally invasive alternative. The majority of procedures aim at the same target, thalamic ventro-intermediate nucleus (Vim). The primary aim is to assess the clinical response in relationship to neuroimaging changes, both at structural and functional level. All GK treatments are uniformly performed in our center using Guiot's targeting and a radiation dose of 130 Gy. MR neuroimaging protocol includes structural imaging (T1-weighted and diffusion-weighted imaging [DWI]), resting-state functional MRI, and 18F-fluorodeoxyglucose-positron emission tomography. Neuroimaging changes are studied both at the level of the cerebello-thalamo-cortical tract (using the prior hypothesis based upon Vim's circuitry: motor cortex, ipsilateral Vim, and contralateral cerebellar dentate nucleus) and also at global brain level (no prior hypothesis). This protocol aims at using modern neuroimaging techniques for studying Vim GK radiobiology for tremor, in relationship to clinical effects, particularly in ET patients. In perspective, using such an approach, patient selection could be based upon a specific brain connectome profile.


Asunto(s)
Conectoma , Temblor Esencial , Radiocirugia , Temblor Esencial/diagnóstico por imagen , Temblor Esencial/radioterapia , Temblor Esencial/cirugía , Humanos , Radiobiología , Núcleos Talámicos , Temblor/diagnóstico por imagen , Temblor/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA