RESUMEN
E. coli DNA gyrase uses the energy of ATP hydrolysis to introduce essential negative supercoils into the genome, thereby working against the mechanical stresses that accumulate in supercoiled DNA. Using a magnetic-tweezers assay, we demonstrate that small changes in force and torque can switch gyrase among three distinct modes of activity. Under low mechanical stress, gyrase introduces negative supercoils by a mechanism that depends on DNA wrapping. Elevated tension or positive torque suppresses DNA wrapping, revealing a second mode of activity that resembles the activity of topoisomerase IV. This 'distal T-segment capture' mode results in active relaxation of left-handed braids and positive supercoils. A third mode is responsible for the ATP-independent relaxation of negative supercoils. We present a branched kinetic model that quantitatively accounts for all of our single-molecule results and agrees with existing biochemical data.
Asunto(s)
Girasa de ADN/metabolismo , Escherichia coli/enzimología , Torque , Adenosina Trifosfato/farmacología , ADN Bacteriano/química , ADN Superhelicoidal/química , Magnetismo , Modelos Biológicos , Conformación de Ácido Nucleico/efectos de los fármacos , Subunidades de Proteína/metabolismoRESUMEN
The initiation of DNA replication requires the melting of chromosomal origins to provide a template for replisomal polymerases. In bacteria, the DnaA initiator plays a key role in this process, forming a large nucleoprotein complex that opens DNA through a complex and poorly understood mechanism. Using structure-guided mutagenesis, biochemical, and genetic approaches, we establish an unexpected link between the duplex DNA-binding domain of DnaA and the ability of the protein to both self-assemble and engage single-stranded DNA in an ATP-dependent manner. Intersubunit cross-talk between this domain and the DnaA ATPase region regulates this link and is required for both origin unwinding in vitro and initiator function in vivo. These findings indicate that DnaA utilizes at least two different oligomeric conformations for engaging single- and double-stranded DNA, and that these states play distinct roles in controlling the progression of initiation.
Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Replicación del ADN , ADN Bacteriano/biosíntesis , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Escherichia coli/metabolismo , Proteínas Bacterianas/genética , Secuencia de Bases , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Modelos Moleculares , Mutagénesis , Mutación , Regiones Promotoras Genéticas/genética , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Especificidad por SustratoRESUMEN
The level of negative DNA supercoiling of the Escherichia coli chromosome is tightly regulated in the cell and influences many DNA metabolic processes including DNA replication, transcription, repair and recombination. Gyrase is the only type II topoisomerase able to introduce negative supercoils into DNA, a unique ability that arises from the specialized C-terminal DNA wrapping domain of the GyrA subunit. Here, we review the biological roles of gyrase in vivo and its mechanism in vitro.
Asunto(s)
Girasa de ADN/metabolismo , Escherichia coli/enzimología , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , Catálisis , Girasa de ADN/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Conformación ProteicaRESUMEN
Escherichia coli topoisomerase IV (topo IV) is an essential enzyme that unlinks the daughter chromosomes for proper segregation at cell division. In vitro, topo IV readily distinguishes between the two possible chiralities of crossing segments in a DNA substrate. The enzyme relaxes positive supercoils and left-handed braids 20 times faster, and with greater processivity, than negative supercoils and right-handed braids. Here, we used chemical cross-linking of topo IV to demonstrate that enzyme bound to positively supercoiled DNA is in a different conformation from that bound to other forms of DNA. Using three different reagents, we observed novel cross-linked species of topo IV when positively supercoiled DNA was in the reaction. We show that the ParE subunits are in close enough proximity to be cross-linked only when the enzyme is bound to positively supercoiled DNA. We suggest that the altered conformation reflects efficient binding by topo IV of the two DNA segments that participate in the strand passage reaction.
Asunto(s)
Topoisomerasa de ADN IV/química , ADN Superhelicoidal/química , Escherichia coli/enzimología , Adenosina Trifosfato/química , Reactivos de Enlaces Cruzados/farmacología , ADN/química , Topoisomerasa de ADN IV/genética , Modelos Genéticos , Conformación Molecular , Conformación de Ácido Nucleico , Unión Proteica , Conformación ProteicaRESUMEN
Smc2/4 forms the core of the Saccharomyces cerevisiae condensin, which promotes metaphase chromosome compaction. To understand how condensin manipulates DNA, we used two in vitro assays to study the role of SMC (structural maintenance of chromosome) proteins and ATP in reconfiguring the path of DNA. The first assay evaluated the topology of knots formed in the presence of topoisomerase II. Unexpectedly, both wild-type Smc2/4 and an ATPase mutant promoted (+) chiral knotting of nicked plasmids, revealing that ATP hydrolysis and the non-SMC condensins are not required to compact DNA chirally. The second assay measured Smc2/4-dependent changes in linking number (Lk). Smc2/4 did not induce (+) supercoiling, but instead induced broadening of topoisomer distributions in a cooperative manner without altering Lk(0). To explain chiral knotting in substrates devoid of chiral supercoiling, we propose that Smc2/4 directs chiral DNA compaction by constraining the duplex to retrace its own path. In this highly cooperative process, both (+) and (-) loops are sequestered (about one per kb), leaving net writhe and twist unchanged while broadening Lk. We have developed a quantitative theory to account for these results. Additionally, we have shown at higher molar stoichiometries that Smc2/4 prevents relaxation by topoisomerase I and nick closure by DNA ligase, indicating that Smc2/4 can saturate DNA. By electron microscopy of Smc2/4-DNA complexes, we observed primarily two protein-laden bound species: long flexible filaments and uniform rings or "doughnuts." Close packing of Smc2/4 on DNA explains the substrate protection we observed. Our results support the hypothesis that SMC proteins bind multiple DNA duplexes.
Asunto(s)
Proteínas Portadoras/fisiología , Proteínas Cromosómicas no Histona/fisiología , ADN/química , Proteínas Nucleares/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Adenosina Trifosfatasas/química , Adenosina Trifosfato/química , Proteínas Portadoras/química , Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona/química , Cromosomas/ultraestructura , ADN Ligasas/química , ADN-Topoisomerasas de Tipo II/química , ADN Superhelicoidal/química , Proteínas de Unión al ADN/química , Hidrólisis , Complejos Multiproteicos/química , Mutación , Proteínas Nucleares/química , Conformación de Ácido Nucleico , Plásmidos/metabolismo , Unión Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Temperatura , Factores de Tiempo , Triticum/metabolismoRESUMEN
The seminal papers by Watson and Crick in 1953 on the structure and function of DNA clearly enunciated the challenge their model presented of how the intertwined strands of DNA are unwound and separated for replication to occur. We first give a historical overview of the major discoveries in the past 50 years that address this challenge. We then describe in more detail the cellular mechanisms responsible for the unlinking of DNA. No single strategy on its own accounts for the complete unlinking of chromosomes required for DNA segregation to proceed. Rather, it is the combined effects of topoisomerase action, chromosome organization and DNA-condensing proteins that allow the successful partitioning of chromosomes into dividing cells. Finally, we propose a model of chromosome structure, consistent with recent findings, that explains how the problem of unlinking is alleviated by the division of chromosomal DNA into manageably sized domains.
Asunto(s)
Adenosina Trifosfatasas/metabolismo , Replicación del ADN , ADN-Topoisomerasas/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Modelos Genéticos , ADN/química , Complejos MultiproteicosRESUMEN
Escherichia coli topoisomerase (Topo) IV is an essential type II Topo that removes DNA entanglements created during DNA replication. Topo IV relaxes (+) supercoils much faster than (-) supercoils, promoting replication while sparing the essential (-) supercoils. Here, we investigate the mechanism underlying this chiral preference. Using DNA binding assays and a single-molecule DNA braiding system, we show that Topo IV recognizes the chiral crossings imposed by the left-handed superhelix of a (+) supercoiled DNA, rather than global topology, twist deformation, or local writhe. Monte Carlo simulations of braid, supercoil, and catenane configurations demonstrate how a preference for a single-crossing geometry during strand passage can allow Topo IV to perform its physiological functions. Single-enzyme braid relaxation experiments also provide a direct measure of the processivity of the enzyme and offer insight into its mechanochemical cycle.