Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
BMC Genomics ; 22(1): 488, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34193035

RESUMEN

BACKGROUND: The thermal-manipulation (TM) during egg incubation is a cyclic exposure to hot or cold temperatures during embryogenesis that is associated to long-lasting effects on growth performance, physiology, metabolism and temperature tolerance in birds. An increase of the incubation temperature of Japanese quail eggs affected the embryonic and post-hatch survival, growth, surface temperatures and blood characteristics potentially related to thermoregulation capacities. To gain new insights in the molecular basis of TM in quails, we investigated by RNA-seq the hypothalamus transcriptome of 35 days-old male and female quails that were treated by TM or not (C, control) during embryogenesis and that were exposed (HC) or not (RT) to a 36 °C heat challenge for 7 h before sampling. RESULTS: For males, 76, 27, 47 and 0 genes were differentially expressed in the CHC vs. CRT, CRT vs. TMRT, TMHC vs. TMRT and CHC vs. TMHC comparisons, respectively. For females, 17, 0, 342 and 1 genes were differentially expressed within the same respective comparisons. Inter-individual variability of gene expression response was observed particularly when comparing RT and HC female animals. The differential expression of several genes was corroborated by RT-qPCR analysis. Gene Ontology functional analysis of the differentially expressed genes showed a prevalent enrichment of terms related to cellular responses to stimuli and gene expression regulation in both sexes. Gene Ontology terms related to the membrane transport, the endoplasmic reticulum and mitochondrial functions as well as DNA metabolism and repair were also identified in specific comparisons and sexes. CONCLUSIONS: TM had little to no effect on the regulation of gene expression in the hypothalamus of 35 days-old Japanese quails. However, the consequences of TM on gene expression were revealed by the HC, with sex-specific and common functions altered. The effects of the HC on gene expression were most prominent in TM females with a ~ 20-fold increase of the number of differentially expressed genes, suggesting that TM may enhance the gene response during challenging conditions in female quail hypothalamus. TM may also promote new cellular strategies in females to help coping to the adverse conditions as illustrated by the identification of differentially expressed genes related to the mitochondrial and heat-response functions.


Asunto(s)
Coturnix , Calor , Animales , Pollos/genética , Coturnix/genética , Desarrollo Embrionario , Femenino , Masculino , Transcriptoma
2.
Biol Proced Online ; 19: 10, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28855851

RESUMEN

BACKGROUND: Genomic loci associated with histone marks are typically analyzed by immunoprecipitation of the chromatin followed by quantitative-PCR (ChIP-qPCR) or high throughput sequencing (ChIP-seq). Chromatin can be either cross-linked (X-ChIP) or used in the native state (N-ChIP). Cross-linking of DNA and proteins helps stabilizing their interactions before analysis. Despite X-ChIP is the most commonly used method, muscle tissue fixation is known to be relatively inefficient. Moreover, no protocol described a simple and reliable preparation of skeletal muscle chromatin of sufficient quality for subsequent high-throughput sequencing. Here we aimed to set-up and compare both chromatin preparation methods for a genome-wide analysis of H3K27me3, a broad-peak histone mark, using chicken P. major muscle tissue. RESULTS: Fixed and unfixed chromatin were prepared from chicken muscle tissues (Pectoralis major). Chromatin fixation, shearing by sonication or digestion and immunoprecipitation performed equivalently. High-quality Illumina reads were obtained (q30 > 93%). The bioinformatic analysis of the data was performed using epic, a tool based on SICER, and MACS2. Forty millions of reads were analyzed for both X-ChIP-seq and N-ChIP-seq experiments. Surprisingly, H3K27me3 X-ChIP-seq analysis led to the identification of only 2000 enriched regions compared to about 15,000 regions identified in the case of N-ChIP-seq. N-ChIP-seq peaks were more consistent between replicates compared to X-ChIP-seq. Higher N-ChIP-seq enrichments were confirmed by ChIP-qPCR at the PAX5 and SOX2 loci known to be enriched for H3K27me3 in myotubes and at the loci of common regions of enrichment identified in this study. CONCLUSIONS: Our findings suggest that the preparation of muscle chromatin for ChIP-seq in cross-linked conditions can compromise the systematic analysis of broad histone marks. Therefore, native chromatin preparation should be preferred to cross-linking when a ChIP experiment has to be performed on skeletal muscle tissue, particularly when a broad source signal is considered.

3.
BMC Genomics ; 17: 329, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27142519

RESUMEN

BACKGROUND: Meat type chickens have limited capacities to cope with high environmental temperatures, this sometimes leading to mortality on farms and subsequent economic losses. A strategy to alleviate this problem is to enhance adaptive capacities to face heat exposure using thermal manipulation (TM) during embryogenesis. This strategy was shown to improve thermotolerance during their life span. The aim of this study was to determine the effects of TM (39.5 °C, 12 h/24 vs 37.8 °C from d7 to d16 of embryogenesis) and of a subsequent heat challenge (32 °C for 5 h) applied on d34 on gene expression in the Pectoralis major muscle (PM). A chicken gene expression microarray (8 × 60 K) was used to compare muscle gene expression profiles of Control (C characterized by relatively high body temperatures, Tb) and TM chickens (characterized by a relatively low Tb) reared at 21 °C and at 32 °C (CHC and TMHC, respectively) in a dye-swap design with four comparisons and 8 broilers per treatment. Real-time quantitative PCR (RT-qPCR) was subsequently performed to validate differential expression in each comparison. Gene ontology, clustering and network building strategies were then used to identify pathways affected by TM and heat challenge. RESULTS: Among the genes differentially expressed (DE) in the PM (1.5 % of total probes), 28 were found to be differentially expressed between C and TM, 128 between CHC and C, and 759 between TMHC and TM. No DE gene was found between TMHC and CHC broilers. The majority of DE genes analyzed by RT-qPCR were validated. In the TM/C comparison, DE genes were involved in energy metabolism and mitochondrial function, cell proliferation, vascularization and muscle growth; when comparing heat-exposed chickens to their own controls, TM broilers developed more specific pathways than C, especially involving genes related to metabolism, stress response, vascularization, anti-apoptotic and epigenetic processes. CONCLUSIONS: This study improved the understanding of the long-term effects of TM on PM muscle. TM broilers displaying low Tb may have lower metabolic intensity in the muscle, resulting in decreased metabolic heat production, whereas modifications in vascularization may enhance heat loss. These specific changes could in part explain the better adaptation of TM broilers to heat.


Asunto(s)
Pollos/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Músculos Pectorales/embriología , Animales , Embrión de Pollo , Pollos/genética , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Calor , Desarrollo de Músculos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
4.
J Anim Sci Biotechnol ; 14(1): 124, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37784159

RESUMEN

BACKGROUND: In the current context of global warming, thermal manipulation of avian embryos has received increasing attention as a strategy to promote heat tolerance in avian species by simply increasing the egg incubation temperature. However, because of their likely epigenetic origin, thermal manipulation effects may last more than one generation with consequences for the poultry industry. In this work, a multigenerational and transgenerational analysis of thermal manipulation during embryogenesis was performed to uncover the long-term effects of such procedure. RESULTS: Thermal manipulation repeated during 4 generations had an effect on hatchability, body weight, and weight of eggs laid in Japanese quails, with some effects increasing in importance over generations. Moreover, the effects on body weight and egg weight could be transmitted transgenerationally, suggesting non-genetic inheritance mechanisms. This hypothesis is reinforced by the observed reversion of the effect on growth after five unexposed generations. Interestingly, a beneficial effect of thermal manipulation on heat tolerance was observed a few days after hatching, but this effect was not transgenerational. CONCLUSIONS: Our multigenerational study showed that thermal conditioning of quail embryos has a beneficial effect on post-hatch heat tolerance hampered by transgenerational but reversible defects on growth. Assuming that no genetic variability underlies these changes, this study provides the first demonstration of epigenetic inheritance of traits induced by environmental temperature modification associated with long-term impacts in an avian species.

5.
Physiol Genomics ; 44(5): 283-92, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22214599

RESUMEN

Chickens mimic an insulin-resistance state by exhibiting several peculiarities with regard to plasma glucose level and its control by insulin. To gain insight into the role of insulin in the control of chicken transcriptome, liver and leg muscle transcriptomes were compared in fed controls and "diabetic" chickens, at 5 h after insulin immuno-neutralization, using 20.7K-chicken oligo-microarrays. At a level of false discovery rate <0.01, 1,573 and 1,225 signals were significantly modified by insulin privation in liver and muscle, respectively. Microarray data agreed reasonably well with qRT-PCR and some protein level measurements. Differentially expressed mRNAs with human ID were classified using Biorag analysis and Ingenuity Pathway Analysis. Multiple metabolic pathways, structural proteins, transporters and proteins of intracellular trafficking, major signaling pathways, and elements of the transcriptional control machinery were largely represented in both tissues. At least 42 mRNAs have already been associated with diabetes, insulin resistance, obesity, energy expenditure, or identified as sensors of metabolism in mice or humans. The contribution of the pathways presently identified to chicken physiology (particularly those not yet related to insulin) needs to be evaluated in future studies. Other challenges include the characterization of "unknown" mRNAs and the identification of the steps or networks, which disturbed tissue transcriptome so extensively, quickly after the turning off of the insulin signal. In conclusion, pleiotropic effects of insulin in chickens are further evidenced; major pathways controlled by insulin in mammals have been conserved despite the presence of unique features of insulin signaling in chicken muscle.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Pollos/inmunología , Insulina/inmunología , Hígado/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Alimentación Animal , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Insulina/fisiología , Anticuerpos Insulínicos/inmunología , Anticuerpos Insulínicos/metabolismo , Anticuerpos Insulínicos/farmacología , Hígado/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Análisis por Micromatrices , Músculo Esquelético/metabolismo , Pruebas de Neutralización , Proteínas/efectos de los fármacos , Proteínas/metabolismo
6.
Am J Physiol Regul Integr Comp Physiol ; 301(1): R201-8, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21508290

RESUMEN

The avian uncoupling protein 3 (UCP3), mainly expressed in muscle tissue, could be involved in fatty acid (FA) metabolism, limitation of reactive oxygen species production, and/or nonshivering thermogenesis. We recently demonstrated that UCP3 mRNA expression was increased by isoproterenol (Iso), a ß-agonist, in chicken Pectoralis major. This upregulation was associated with changes in FA metabolism and variations in the activation of AMP-activated protein kinase (AMPK) and in the expression of the transcription factors peroxisome proliferator-activated receptor (PPAR)α, PPARß/δ, and PPARγ coactivator-1α (PGC-1α). The aim of the present study was to elucidate the mechanisms involving AMPK and PPARα in UCP3 regulation in primary cultures of chick myoblasts. Avian UCP3 mRNA expression, associated with p38 mitogen-activated protein kinase (p38 MAPK) activation, was increased by Iso and/or FAs. The PKA pathway mediated the effects of Iso on UCP3 expression. FA stimulation also led to AMPK activation. Furthermore, the direct involvement of AMPK on UCP3 regulation was shown by using 5-aminoimidazole-4-carboxyamide ribonucleoside and Compound C. The use of the p38 MAPK inhibitor SB202190, which was associated with AMPK activation, also dramatically enhanced UCP3 mRNA expression. Finally the PPARα agonist WY-14643 strongly increased UCP3 mRNA expression. This study highlights the control of UCP3 expression by the ß-adrenergic system and FA in chick myoblasts and demonstrates that its expression is directly regulated by AMPK and by PPARα. Overexpression of avian UCP3 might modulate energy utilization or limit oxidative stress when mitochondrial metabolism of FA is triggered by catecholamines.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Aviares/metabolismo , Pollos/fisiología , Ácidos Grasos/farmacología , Isoproterenol/farmacología , Proteínas Mitocondriales/metabolismo , Mioblastos Esqueléticos/metabolismo , PPAR alfa/metabolismo , Agonistas Adrenérgicos beta/farmacología , Animales , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Metabolismo Energético/fisiología , Proteínas Desacopladoras Mitocondriales , Modelos Animales , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/efectos de los fármacos , Estrés Oxidativo/fisiología , ARN Mensajero/metabolismo , Transducción de Señal/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
7.
Front Vet Sci ; 8: 759456, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34746291

RESUMEN

The potential of herbal extracts containing bioactive compounds to strengthen immunity could contribute to reducing antimicrobial use in poultry. This study aimed at developing a reliable and robust methodological pipeline to assess the ability of herbal extracts to strengthen chicken innate defenses, especially concerning inflammation and oxidative stress. This methodology was applied to Melissa officinalis L. (MEL) extract, recognized for its biological activities including antioxidant and anti-inflammatory properties. Different methods were used to (1). guarantee the quality of MEL extract and its capacity to stimulate the innate immune system; (2). evaluate the relevance of an ex vivo model to mimic inflammatory and oxidative stress challenges to replace LPS injection in chickens; (3). analyse the effects of feed supplemented with MEL extract on inflammation and oxidative stress induced ex vivo; (4). assess the effects of MEL extract on the redox balance, health, welfare and performance in broilers exposed to suboptimal starting conditions through a large-scale approach. The quality of MEL extract preparations, through phytochemical quantification of rosmarinic acid (RA), revealed varying concentrations of RA in the different MEL extracts. RA concentrations remained stable for at least 9 months and in feed three months after incorporating MEL extract. When incubated with chicken cell lines MEL extract showed potential metabolic activation and ability to stimulate immune functions but induced cytotoxicity at high concentrations. The original ex vivo model of inflammation developed on chicken blood cells enabled inflammation and oxidative stress biomarkers to be expressed and revealed antioxidative and anti-inflammatory properties of blood cells from chickens fed MEL extract. The experimental model of chicken suboptimal starting conditions validated beneficial effects of MEL extract on the redox balance and also evidenced improved performance during the growth phase, a tendency for fewer muscle defects but a higher severity of pododermatitis lesions without affecting other welfare indicators. This study grouped methods and tools that could be combined according to the plant extract, the needs of professionals working in poultry production systems and staff responsible for animal health, welfare and feeding.

8.
J Nutr ; 140(9): 1539-45, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20610638

RESUMEN

Amino acids modulate mRNA translation through the 70 kDa ribosomal protein S6 kinase (S6K1) and the general control nondepressible 2 protein kinase (GCN2)/eukaryotic initiation factor 2 alpha eIF2 alpha pathways. The aim of the present study was therefore to explore the signaling cascades potentially modulated by methionine availability in quail muscle QM7 myoblasts using media providing all other amino acids. Methionine deprivation caused a lower S6K1 phosphorylation compared with control (Ctl) cells. Supplying the methionine-deprived media with L- and DL-methionine isomers restored S6K1 phosphorylation to the levels observed in Ctl cells. Methionine also regulated downstream S6K1 targets (i.e. ribosomal protein S6 and eukaryotic elongation factor 2), modulated translation preinitiation complex (PIC) assembly, and stimulated protein synthesis. Replacing the lacking methionine with D-methionine or its hydroxyanalog [2-hydroxy-(4-methylthio) butanoic acid] did not restore S6K1 activation or protein synthesis. Conversely, the S6K1 pathway was activated by a methionine precursor, the ketoanalog of methionine. Methionine availability regulated the GCN2/eIF2 alpha pathway. However, our results indicate that methionine deprivation led to lower protein synthesis without activating eIF2 alpha phosphorylation, a process known to limit the formation of the 43S PIC. Using the amino acid alcohol methioninol did not decrease S6K1 phosphorylation or activity and did not alter the regulation of protein synthesis by methionine. These findings suggest that methionine exerts an effect on S6K1 signaling and protein synthesis in avian QM7 myoblasts through a mechanism partly independent of the global regulation via tRNA charging.


Asunto(s)
Metionina/farmacología , Mioblastos/metabolismo , Biosíntesis de Proteínas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Codorniz , ARN de Transferencia/metabolismo
9.
PLoS One ; 15(1): e0227700, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31971994

RESUMEN

In vertebrates, the embryonic environment is known to affect the development and the health of individuals. In broiler chickens, the thermal-manipulation (TM) of eggs during the incubation period was shown to improve heat tolerance at slaughter age (35 days of age) in association with several modifications at the molecular, metabolic and physiological levels. However, little is known about the Japanese quail (Coturnix japonica), a closely related avian species widely used as a laboratory animal model and farmed for its meat and eggs. Here we developed and characterized a TM procedure (39.5°C and 65% relative humidity, 12 h/d, from days 0 to 13 of incubation) in quails by analyzing its short and long-term effects on zootechnical, physiological and metabolic parameters. Heat-tolerance was tested by a heat challenge (36°C for 7h) at 35 days of age. TM significantly reduced the hatching rate of the animals and increased mortality during the first four weeks of life. At hatching, TM animals were heavier than controls, but lighter at 25 days of age for both sexes. Thirty-five days after hatching, TM decreased the surface temperature of the shank in females, suggesting a modulation of the blood flow to maintain the internal temperature. TM also increased blood partial pressure and oxygen saturation percentage at 35 days of age in females, suggesting a long-term modulation of the respiration physiology. Quails physiologically responded to the heat challenge, with a modification of several hematologic and metabolic parameters, including an increase in plasma corticosterone concentration. Several physiological parameters such as beak surface temperature and blood sodium concentration revealed that TM birds responded differently to the heat challenge compared to controls. Altogether, this first comprehensive characterization of TM in Japanese quail showed durable effects that may affect the response of TM quails to heat.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Coturnix/embriología , Animales , Antioxidantes/metabolismo , Embrión de Pollo , Pollos/crecimiento & desarrollo , Pollos/fisiología , Coturnix/crecimiento & desarrollo , Coturnix/fisiología , Desarrollo Embrionario/fisiología , Femenino , Gases/sangre , Calor , Masculino , Termotolerancia/fisiología
10.
J Nutr ; 139(1): 38-43, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19056657

RESUMEN

Amino acids are known to be anabolic factors that affect protein metabolism, but the response of animals to daily amino acid changes is little understood. We aimed to test the effects of feeding birds with alternations of diets varying in lysine content on the expression of genes related to proteolysis in chicken muscle. Cyclic feeding programs with 2 diets, each given for 24 h during 48-h cycles, were carried out from 10 d of age. Three programs were used: 1) control treatment with continuous distribution of a complete diet containing standard medium lysine level (ML; 11.9 g/kg); 2) alternation of diets with high (HL) and low (LL) lysine levels; 3) alternation of ML and LL diets, where LL = 70%, ML = 100%, HL = 130% of standard lysine level. The Pectoralis major muscles were sampled after 2 wk of cyclic feeding. Measurements included the expression patterns of 6 genes involved in proteolysis, and mammalian target of rapamycin and Forkhead box-O transcription factor (FoxO) signaling. Cathepsin B, m-calpain, and E3 ubiquitin ligases Muscle Ring Finger-1 and Muscle Atrophy F box were significantly overexpressed in chickens transiently fed the LL diet, whereas the mRNA levels of 20S proteasome C2 subunit and ubiquitin remained unchanged. Modifications of E3 ubiquitin ligase expression can be partly explained by significant changes in FoxO phosphorylation with cyclic dietary treatments. Our results suggest timing-sensitive regulation of proteolysis in chicken muscle according to dietary treatment and a high metabolism capacity to compensate for changes in amino acid supply, which might be used for nutritional purposes.


Asunto(s)
Pollos/metabolismo , Proteínas en la Dieta/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Lisina/farmacología , Músculo Esquelético/metabolismo , Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Dieta/veterinaria , Relación Dosis-Respuesta a Droga , Perfilación de la Expresión Génica , Masculino , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Fosforilación
11.
Genes (Basel) ; 10(3)2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30836711

RESUMEN

RT-qPCR is the gold standard for candidate gene expression analysis. However, the interpretation of RT-qPCR results depends on the proper use of internal controls, i.e., reference genes. Japanese quail is an agronomic species also used as a laboratory model, but little is known about RT-qPCR reference genes for this species. Thus, we investigated 10 putative reference genes (ACTB, GAPDH, PGK1, RPS7, RPS8, RPL19, RPL32, SDHA, TBP and YWHAZ) in three different female and male quail tissues (liver, brain and pectoral muscle). Gene expression stability was evaluated with three different algorithms: geNorm, NormFinder and BestKeeper. For each tissue, a suitable set of reference genes was defined and validated by a differential analysis of gene expression between females and males (CCNH in brain and RPL19 in pectoral muscle). Collectively, our study led to the identification of suitable reference genes in liver, brain and pectoral muscle for Japanese quail, along with recommendations for the identification of reference gene sets for this species.


Asunto(s)
Coturnix/genética , Ciclina H/genética , Perfilación de la Expresión Génica/normas , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Proteínas Ribosómicas/genética , Algoritmos , Animales , Proteínas Aviares/genética , Encéfalo/metabolismo , Femenino , Regulación de la Expresión Génica , Masculino , Músculo Esquelético/química , Especificidad de Órganos , Estándares de Referencia
12.
Front Genet ; 10: 1207, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31850067

RESUMEN

Changes in gene activity through epigenetic alterations induced by early environmental challenges during embryogenesis are known to impact the phenotype, health, and disease risk of animals. Learning how environmental cues translate into persisting epigenetic memory may open new doors to improve robustness and resilience of developing animals. It has previously been shown that the heat tolerance of male broiler chickens was improved by cyclically elevating egg incubation temperature. The embryonic thermal manipulation enhanced gene expression response in muscle (P. major) when animals were heat challenged at slaughter age, 35 days post-hatch. However, the molecular mechanisms underlying this phenomenon remain unknown. Here, we investigated the genome-wide distribution, in hypothalamus and muscle tissues, of two histone post-translational modifications, H3K4me3 and H3K27me3, known to contribute to environmental memory in eukaryotes. We found 785 H3K4me3 and 148 H3K27me3 differential peaks in the hypothalamus, encompassing genes involved in neurodevelopmental, metabolic, and gene regulation functions. Interestingly, few differences were identified in the muscle tissue for which differential gene expression was previously described. These results demonstrate that the response to embryonic thermal manipulation (TM) in chicken is mediated, at least in part, by epigenetic changes in the hypothalamus that may contribute to the later-life thermal acclimation.

13.
Domest Anim Endocrinol ; 34(1): 63-73, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17166687

RESUMEN

In mammals, insulin regulates S6K1, a key enzyme involved in the control of protein synthesis, via the well-documented phosphoinositide-3'kinase (PI3K) pathway. Conversely, S6K1 is activated by insulin in avian muscle despite the relative insulin insensitivity of the PI3K pathway in this tissue. Mitogen-activated protein kinase (MAPK) cascade is another insulin sensitive pathway. The aim of this study was to explore the potential involvement of the ERK1/2 MAPK pathway in the control of p70 S6 kinase (S6K1) in avian species. Firstly, we characterized ERK1/2 MAPK in various chicken tissues. ERK2 was the only isoform detected in avian species whatever the tissue studied. We also showed that ERK2 is activated in vivo by insulin in chicken muscle. The regulation and the role of ERK2 in insulin signaling were next investigated in chicken hepatoma cells (LMH) and primary myoblasts. Insulin stimulation led to ERK2 and S6K1 phosphorylation, and concomitantly increased kinase activity. U0126, an inhibitor of the ERK MAPK pathway, completely abolished insulin-induced S6K1 phosphorylation and activity in chicken myoblasts, whereas its effect was only partial in LMH cells. In conclusion, these results show that ERK1/2 MAPK is involved in the control of S6K1 by insulin in chicken cells, particularly myoblasts.


Asunto(s)
Pollos/metabolismo , Insulina/farmacología , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Músculos Pectorales/enzimología , Proteínas Quinasas S6 Ribosómicas/metabolismo , Animales , Western Blotting/veterinaria , Butadienos/farmacología , Línea Celular Tumoral , Cromonas/farmacología , Activación Enzimática , Insulina/metabolismo , Neoplasias Hepáticas Experimentales , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Morfolinas/farmacología , Mioblastos Esqueléticos/enzimología , Nitrilos/farmacología , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Proteínas Quinasas S6 Ribosómicas/genética
14.
Domest Anim Endocrinol ; 34(2): 204-16, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17478073

RESUMEN

IGF-1 plays a key role in the proliferation and differentiation of granulosa cells. However, the molecular mechanism of IGF-1 action in avian granulosa cells during follicle maturation is unclear. Here, we first studied IGF-1 receptor (IGF-1R) expression, IGF-1-induced progesterone production and some IGF-1R signaling pathways in granulosa cells from different follicles. IGF-1R (mRNA and protein) was higher in fresh or cultured granulosa cells from the largest follicles (F1 or F2) than in those from smaller follicles (F3 or F4). In vitro, IGF-1 treatment (10(-8)M, 36h) increased progesterone secretion by four-fold in mixed F3 and F4 (F3/4) granulosa cells and by 1.5-fold in F1 granulosa cells. IGF-1 (10(-8)M, 30min)-induced increases in tyrosine phosphorylation of IGF-1R beta subunit and phosphorylation of ERK were higher in F1 than in F3/4 granulosa cells. Interestingly, IGF-1 stimulation (10(-8)M, 10min) decreased the level of AMPK Thr172 phosphorylation in F1 and F3/4 granulosa cells. We have recently showed that AMPK (AMP-activated protein kinase) is a protein kinase involved in the steroidogenesis in chicken granulosa cells. We then studied the effects of AMPK activation by AICAR (5-aminoimidazole-4-carboxamide ribonucleoside), an activator of AMPK, on IGF-1-induced progesterone secretion by F3/4 and F1 granulosa cells. AICAR treatment (1mM, 36h) increased IGF-1-induced progesterone secretion, StAR protein levels and decreased ERK phosphorylation in F1 granulosa cells. Opposite data were observed in F3/4 granulosa cells. Adenovirus-mediated expression of dominant negative AMPK totally reversed the effects of AICAR on IGF-1-induced progesterone secretion, StAR protein production and ERK phosphorylation in both F3/4 and F1 granulosa cells. Thus, a variation of energy metabolism through AMPK activation could modulate differently IGF-1-induced progesterone production in F1 and F3/4 granulosa cells.


Asunto(s)
Adenilato Quinasa/metabolismo , Pollos/metabolismo , Células de la Granulosa/metabolismo , Progesterona/metabolismo , Receptor IGF Tipo 1/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Western Blotting/veterinaria , Proliferación Celular , Activación Enzimática , Activadores de Enzimas/farmacología , Femenino , Células de la Granulosa/enzimología , Humanos , Factor I del Crecimiento Similar a la Insulina/farmacología , Fosforilación , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptor IGF Tipo 1/biosíntesis , Receptor IGF Tipo 1/genética , Proteínas Recombinantes/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Ribonucleótidos/farmacología , Transducción de Señal , Células Tecales/enzimología , Células Tecales/metabolismo
15.
J Anim Sci ; 96(2): 498-509, 2018 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-29401234

RESUMEN

Glucose transport into cells is the first limiting step for the regulation of glucose homeostasis. In mammals, it is mediated by a family of facilitative glucose transporters (GLUTs) (encoded by SLC2A* genes), with a constitutive role (GLUT1), or insulin-sensitive transporters (GLUT4, GLUT8, and GLUT12). Compared to mammals, the chicken shows high levels of glycemia and relative insensitivity to exogenous insulin. To date, only GLUT1, GLUT8, and GLUT12 have been described in chicken skeletal muscles but not fully characterized, whereas GLUT4 was reported as lacking. The aim of the present study was to determine the changes in the expression of the SLC2A1, SLC2A8, and SLC2A12 genes, encoding GLUT1, GLUT8, and GLUT12 proteins respectively, during ontogenesis and how the respective expression of these three genes is affected by the muscle type and the nutritional or insulin status of the bird (fed, fasted, or insulin immunoneutralized). SLC2A1 was mostly expressed in the glycolytic pectoralis major (PM) muscle during embryogenesis and 5 d posthatching while SLC2A8 was mainly expressed at hatching. SLC2A12 expression increased regularly from 12 d in ovo up to 5 d posthatching. In the mixed-type sartorius muscle, the expression of SLC2A1 and SLC2A8 remained unchanged, whereas that of SLC2A12 was gradually increased during early muscle development. The expression of SLC2A1 and SLC2A8 was greater in oxidative and oxidoglycolytic muscles than in glycolytic muscles. The expression of SLC2A12 differed considerably between muscles but not necessarily in relation to muscle contractile or metabolic type. The expression of SLC2A1, SLC2A8, and SLC2A12 was reduced by fasting and insulin immunoneutralization in the PM muscle, while in the leg muscles only SLC2A12 was impaired by insulin immunoneutralization. Our findings clearly indicate differential regulation of the expression of three major GLUTs in skeletal muscles, with some type-related features. They provide new insights to improve the understanding of the fine regulation of glucose utilization in chicken muscles.


Asunto(s)
Pollos/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Resistencia a la Insulina , Insulina/metabolismo , Animales , Transporte Biológico , Glucemia/análisis , Glucosa/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Masculino , Músculo Esquelético/metabolismo
16.
Domest Anim Endocrinol ; 33(4): 480-7, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17010558

RESUMEN

Adiponectin and its receptors (AdipoR1 and AdipoR2) mRNAs are expressed in various chicken tissues including ovary. However, the cellular expression and the role of adiponectin system have never been investigated in chicken ovary. Here, we have shown that the level of adiponectin mRNA is about 10- to 30-fold higher (p<0.001) in theca cells than in granulosa cells from each hierarchical yellow follicle studied (F4-F1). In contrast, the level of AdipoR1 mRNA expression was about two-fold lower in theca cells than in granulosa cells (p<0.05) whereas those of AdipoR2 was similar in both ovarian cells. Whereas expression of adiponectin mRNA increased with follicular differentiation in theca cells, it decreased in granulosa cells. In contrast, mRNA expression of AdipoR1 and AdipoR2 in both theca and granulosa cells remained stable during yellow follicle development. To determine whether adiponectin is involved in the ovarian steroidogenesis, LH (100 ng/ml)-, FSH (100 ng/ml)- and IGF-1 (100 ng/ml)-induced progesterone production was measured in absence or presence of human recombinant adiponectin (10 microg/ml) for 36 h in cultured granulosa cells from F1, F2 and mixed F3 and F4 follicles. In absence of LH, FSH and IGF-1, adiponectin treatment had no effects on progesterone production whatever vitollegenic follicle studied. However, it increased by about two-fold IGF-1-induced progesterone secretion in F2 and F3/4 follicles whereas it halved progesterone production in response to gonadotropins (LH and FSH) in F3/4 follicles. Thus, in chicken, adiponectin, mainly expressed in theca cells, could exert paracrine or autocrine effect on the ovarian steroidogenesis.


Asunto(s)
Adiponectina/genética , Pollos/metabolismo , Expresión Génica , Ovario/metabolismo , Progesterona/biosíntesis , Receptores de Adiponectina/genética , Proteínas Quinasas Activadas por AMP , Acetil-CoA Carboxilasa/metabolismo , Adiponectina/farmacología , Adiponectina/fisiología , Animales , Femenino , Hormona Folículo Estimulante/farmacología , Humanos , Factor I del Crecimiento Similar a la Insulina/farmacología , Hormona Luteinizante/farmacología , Complejos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Adiponectina/fisiología , Proteínas Recombinantes/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Poult Sci ; 96(7): 2459-2470, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28339706

RESUMEN

Decades of genetic selection have generated 2 different, highly specialized types of chickens in which 1 type, known as the layer-type chicken, expresses high laying performance while the other type, known as the broiler-type chicken, is dedicated to the production of fast-growing birds. Selected lines for the latter type often express disorders in their reproductive performance including early sexual maturation and accelerated, non-reversible seasonal decline of their semen production and mating behavior. The aim of the present study was to characterize some metabolic markers of the Sertoli cell populations. Sertoli cells are somatic cells known to support, coordinate, nourish, and protect the germ cell populations from onset to the end of their meiotic process. Comparisons of gonadal development between males of the 2 genetic types taken at their pre-pubertal period indicated that the testes of layer-type chickens are significantly less developed than in broiler-type males taken at the same age. In addition, cultures of purified Sertoli cells from the 2 types revealed in vitro a higher proliferative capacity when issued from layer compared to broiler-type chickens. This was associated with a higher expression of the genes involved in the beta-oxidation of fatty acids (CPT1; PPARß) as well as a 4-fold increase in the Lactate Dehydrogenase-A expression and activity. In contrast, Sertoli cells from broiler-type chickens presented an elevated activity of citrate synthase and mitochondria, suggesting a better efficacy of aerobic metabolism in Sertoli cells from broiler compared to layer-type chickens. Moreover, the testis from broiler-type chickens seems to be more sensitive to oxidative stress due to the lower global antioxidant capacity compared to layer-type chickens.In conclusion, these results suggest that the metabolic activity of testicular tissues is different in the layer and broiler breeder chickens. The aerobic metabolism more prevalent in broiler-type chickens could be a factor to reduce the male fertility such as germ cell quality.


Asunto(s)
Proliferación Celular , Pollos/fisiología , Células de Sertoli/fisiología , Testículo/crecimiento & desarrollo , Animales , Pollos/genética , Pollos/crecimiento & desarrollo , Masculino , Selección Genética
18.
J Endocrinol ; 190(1): 85-97, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16837613

RESUMEN

AMP-activated protein kinase (AMPK) is a fuel sensor in glucose, lipid, and cholesterol metabolism. Using RT-PCR and Western blot, AMPK subunits mRNAs (alpha1/2, beta1/2, and gamma1/2) and proteins (alpha1/2 and beta1/2) can be found in the hen preovulatory follicles and precisely in both granulosa and theca cells. These preovulatory follicles are organized in a hierarchy according to their size (F5/6 to F1). The smallest number (F1) corresponds to the largest size and the latest mature stage. Phosphorylation of AMPKalpha on Thr172 and of acetyl-CoA carboxylase on Ser79 are higher in F4 and F3 than in F1 granulosa cells. However, they are not affected in F4-F1 theca cells. Treatment with 1 mM 5-amino-imidazole-4-carboxyamide-1-beta-D-ribofuranoside (AICAR), an activator of AMPK, dose dependently increased phosphorylation of AMPKalpha on Thr172 in primary F3/4 and F1 granulosa cells. In the absence of FSH, AICAR treatment increased progesterone, P450 side chain cleavage and steroidogenic acute regulatory (StAR) production in both F3/4 and F1 granulosa cells. However, in the presence of FSH, AICAR treatment for 36 h increased progesterone secretion, StAR protein levels and reduced extracellular signal-regulated kinase (ERK)1/2 phosphorylation in F3/4 granulosa cells. Opposite data were observed in F1 granulosa cells. Adenovirus-mediated expression of dominant-negative AMPK totally restored the effects of AICAR on FSH-induced progesterone secretion, StAR protein production, and ERK1/2 phosphorylation in F3/4 and F1 granulosa cells. Using a specific inhibitor of ERK1/2 (U0126), we also showed that this kinase is a negative regulator of the FSH-induced progesterone secretion in F3/4 and F1 granulosa cells, suggesting that AICAR-mediated AMPK activation modifies FSH-induced progesterone secretion differently through the ERK1/2 signaling pathway in hen F3/4 and F1 granulosa cells.


Asunto(s)
Células de la Granulosa/metabolismo , Complejos Multienzimáticos/metabolismo , Progesterona/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Western Blotting/métodos , Butadienos/farmacología , Células Cultivadas , Pollos , Activación Enzimática , Femenino , Hormona Folículo Estimulante/farmacología , Fase Folicular , Células de la Granulosa/enzimología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/genética , Nitrilos/farmacología , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribonucleótidos/farmacología , Transducción Genética/métodos
19.
Domest Anim Endocrinol ; 31(2): 123-40, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16307863

RESUMEN

The phosphatase and TENsin homolog deleted on chromosome 10 (PTEN) is a lipid and protein phosphatase able to inhibit significant actors of cell signaling (i.e. phosphatidylinositol-3'kinase and mitogen-activated protein kinase pathways). The aim of this study was to characterize PTEN and to investigate its regulation during ontogenesis in chicken muscle. Pectoralis major muscle was sampled on day 18 of the embryonic period (E18), at hatching (d0) and in fed chickens at 2, 7 and 43 days after hatching (d2, d7 and d43). We first cloned the totality of chicken PTEN cDNA; its translation into a putative protein showed more than 95% sequence identity with that characterized in mammals (humans, mice). PTEN was expressed under two major transcripts in the majority of tissues, including muscles where the expression of PTEN mRNA increased with age (P < 0.05). Surprisingly, the protein levels of PTEN (protein characterized with an apparent molecular weight of 55kDa) and its activity were considerably decreased between the E18 and d43 stages (approximately 8-10-fold reduction, P < 0.001). An association between these decreases and higher phosphorylation levels of two potential indirect downstream targets of phosphatase (i.e. AKT and ERK) was observed only in the early growth phases. It was concluded that phosphatase PTEN was expressed in chicken muscle and that its expression was regulated during ontogenesis.


Asunto(s)
Pollos/fisiología , Fosfohidrolasa PTEN/metabolismo , Músculos Pectorales/enzimología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Glucemia/metabolismo , Northern Blotting/veterinaria , Western Blotting/veterinaria , Embrión de Pollo , Pollos/crecimiento & desarrollo , Pollos/metabolismo , Insulina/sangre , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Datos de Secuencia Molecular , Fosfohidrolasa PTEN/biosíntesis , Fosfohidrolasa PTEN/genética , Músculos Pectorales/embriología , Músculos Pectorales/crecimiento & desarrollo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/biosíntesis , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Alineación de Secuencia , Transducción de Señal
20.
PLoS One ; 10(10): e0139517, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26431526

RESUMEN

In mammals, insulin-sensitive GLUTs, including GLUT4, are recruited to the plasma membrane of adipose and muscle tissues in response to insulin. The GLUT4 gene is absent from the chicken genome, and no functional insulin-sensitive GLUTs have been characterized in chicken tissues to date. A nucleotide sequence is predicted to encode a chicken GLUT12 ortholog and, interestingly, GLUT12 has been described to act as an insulin-sensitive GLUT in mammals. It encodes a 596 amino acid protein exhibiting 71% identity with human GLUT12. First, we present the results of a phylogenetic study showing the stability of this gene during evolution of vertebrates. Second, tissue distribution of chicken SLC2A12 mRNA was characterized by RT-PCR. It was predominantly expressed in skeletal muscle and heart. Protein distribution was analysed by Western blotting using an anti-human GLUT12 antibody directed against a highly conserved region (87% of identity). An immuno-reactive band of the expected size (75kDa) was detected in the same tissues. Third a physiological characterization was performed: SLC2A12 mRNA levels were significantly lowered in fed chickens subjected to insulin immuno-neutralization. Finally, recruitment of immuno-reactive GLUT12 to the muscle plasma membrane was increased following 1h of intraperitoneal insulin administration (compared to a control fasted state). Thus insulin administration elicited membrane GLUT12 recruitment. In conclusion, these results suggest that the facilitative glucose transporter protein GLUT12 could act in chicken muscle as an insulin-sensitive transporter that is qualitatively similar to GLUT4 in mammals.


Asunto(s)
Pollos/genética , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Animales , Pollos/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Corazón/fisiología , Insulina/metabolismo , Masculino , Músculo Esquelético/metabolismo , Filogenia , ARN Mensajero/genética , Distribución Tisular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA