Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 146(1): 372-386, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35094052

RESUMEN

Dysfunction of fronto-striato-thalamic (FST) circuits is thought to contribute to dopaminergic dysfunction and symptom onset in psychosis, but it remains unclear whether this dysfunction is driven by aberrant bottom-up subcortical signalling or impaired top-down cortical regulation. We used spectral dynamic causal modelling of resting-state functional MRI to characterize the effective connectivity of dorsal and ventral FST circuits in a sample of 46 antipsychotic-naïve first-episode psychosis patients and 23 controls and an independent sample of 36 patients with established schizophrenia and 100 controls. We also investigated the association between FST effective connectivity and striatal 18F-DOPA uptake in an independent healthy cohort of 33 individuals who underwent concurrent functional MRI and PET. Using a posterior probability threshold of 0.95, we found that midbrain and thalamic connectivity were implicated as dysfunctional across both patient groups. Dysconnectivity in first-episode psychosis patients was mainly restricted to the subcortex, with positive symptom severity being associated with midbrain connectivity. Dysconnectivity between the cortex and subcortical systems was only apparent in established schizophrenia patients. In the healthy 18F-DOPA cohort, we found that striatal dopamine synthesis capacity was associated with the effective connectivity of nigrostriatal and striatothalamic pathways, implicating similar circuits to those associated with psychotic symptom severity in patients. Overall, our findings indicate that subcortical dysconnectivity is evident in the early stages of psychosis, that cortical dysfunction may emerge later in the illness, and that nigrostriatal and striatothalamic signalling are closely related to striatal dopamine synthesis capacity, which is a robust marker for psychosis.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Humanos , Dopamina/metabolismo , Trastornos Psicóticos/diagnóstico por imagen , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/metabolismo , Dihidroxifenilalanina , Imagen por Resonancia Magnética , Vías Nerviosas/fisiología
2.
Neuropsychol Rev ; 33(1): 192-220, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35194692

RESUMEN

Despite a growing body of research, there is yet to be a cohesive synthesis of studies examining differences in brain morphology according to patterns of cognitive function among both schizophrenia-spectrum disorder (SSD) and bipolar disorder (BD) individuals. We aimed to provide a systematic overview of the morphological differences-inclusive of grey and white matter volume, cortical thickness, and cortical surface area-between cognitive subgroups of these disorders and healthy controls, and between cognitive subgroups themselves. An initial search of PubMed and Scopus databases resulted in 1486 articles of which 20 met inclusion criteria and were reviewed in detail. The findings of this review do not provide strong evidence that cognitive subgroups of SSD or BD map to unique patterns of brain morphology. There is preliminary evidence to suggest that reductions in cortical thickness may be more strongly associated with cognitive impairment, whilst volumetric deficits may be largely tied to the presence of disease.


Asunto(s)
Trastorno Bipolar , Disfunción Cognitiva , Esquizofrenia , Sustancia Blanca , Humanos , Trastorno Bipolar/complicaciones , Esquizofrenia/complicaciones , Cognición
3.
Brain Behav Immun ; 113: 166-175, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37423513

RESUMEN

OBJECTIVE: Immune system dysfunction is hypothesised to contribute to structural brain changes through aberrant synaptic pruning in schizophrenia. However, evidence is mixed and there is a lack of evidence of inflammation and its effect on grey matter volume (GMV) in patients. We hypothesised that inflammatory subgroups can be identified and that the subgroups will show distinct neuroanatomical and neurocognitive profiles. METHODS: The total sample consisted of 1067 participants (chronic patients with schizophrenia n = 467 and healthy controls (HCs) n = 600) from the Australia Schizophrenia Research Bank (ASRB) dataset, together with 218 recent-onset patients with schizophrenia from the external Benefit of Minocycline on Negative Symptoms of Psychosis: Extent and Mechanism (BeneMin) dataset. HYDRA (HeterogeneitY through DiscRiminant Analysis) was used to separate schizophrenia from HC and define disease-related subgroups based on inflammatory markers. Voxel-based morphometry and inferential statistics were used to explore GMV alterations and neurocognitive deficits in these subgroups. RESULTS: An optimal clustering solution revealed five main schizophrenia groups separable from HC: Low Inflammation, Elevated CRP, Elevated IL-6/IL-8, Elevated IFN-γ, and Elevated IL-10 with an adjusted Rand index of 0.573. When compared with the healthy controls, the IL-6/IL-8 cluster showed the most widespread, including the anterior cingulate, GMV reduction. The IFN-γ inflammation cluster showed the least GMV reduction and impairment of cognitive performance. The CRP and the Low Inflammation clusters dominated in the younger external dataset. CONCLUSIONS: Inflammation in schizophrenia may not be merely a case of low vs high, but rather there are pluripotent, heterogeneous mechanisms at play which could be reliably identified based on accessible, peripheral measures. This could inform the successful development of targeted interventions.


Asunto(s)
Esquizofrenia , Humanos , Interleucina-6 , Interleucina-8 , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Sustancia Gris , Aprendizaje Automático Supervisado
4.
J Child Psychol Psychiatry ; 64(3): 449-460, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36325967

RESUMEN

BACKGROUND: Morning-evening preference is defined as an individual's preference for a morning- or evening-oriented rhythm. Across adolescence, a preference for eveningness becomes more predominant. Although eveningness is cross-sectionally associated with internalizing and externalizing psychopathology, few studies have examined developmental changes in eveningness and its potential biological substrates. Here, we investigated the longitudinal relationships among the trajectory of eveningness preference, internalizing and externalizing psychopathology and white matter development, across adolescence. METHODS: Two-hundred and nine adolescents (49% male) were assessed longitudinally at four separate time points between 12 and 19 years of age. Morning-evening preference and internalizing and externalizing symptoms were assessed at each time point. Diffusion-weighted images were acquired on a subset of participants at the final two time points to estimate changes in global mean fractional anisotropy (FA). Linear mixed models were performed to estimate the change in eveningness over time. A series of linear regression models assessed the influence of change in eveningness on psychopathology and white matter development at age 19. RESULTS: Across the sample, a preference for eveningness became more predominant by 19 years of age. Greater individual-level change towards eveningness significantly predicted greater severity in externalizing, but not internalizing, symptoms at 19 years of age. In contrast, change in psychopathology from 12 to 19 years of age was not associated with morning-eveningness at age 19. A change towards eveningness predicted an attenuated increase in FA between 17 and 19 years of age. CONCLUSIONS: This study suggests that developmental changes in morning-evening preference may predict both neurodevelopmental and psychological outcomes in adolescents.


Asunto(s)
Ritmo Circadiano , Trastornos Mentales , Humanos , Masculino , Adolescente , Adulto Joven , Adulto , Femenino , Encéfalo/diagnóstico por imagen , Encuestas y Cuestionarios , Sueño
5.
Acta Neuropsychiatr ; : 1-6, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37612148

RESUMEN

OBJECTIVE: A range of neuropathological changes occur in the brains of individuals with adult Niemann-Pick type C disease (NPC), a recessive disorder of cholesterol trafficking that results in accumulation of cholesterol and gangliosides in lysosomes, particularly in neurons. One of the most significant regions of grey matter loss occurs in the thalami, which abut the midline. What is not known is whether these are neurodevelopmental in origin well prior to symptomatic onset. We aimed to examine other markers of midline developmental anomalies in adults with NPC. METHOD: We examined the size of adhesio interthalamica (AI) and cavum septum pellucidum (CSP) (if present) in nine individuals diagnosed with NPC and nine healthy comparison subjects, matched for age and gender, using a 3T magnetic resonance volumetric sequence and measured the length of the AI and CSP in mm. RESULTS: We found that 5/9 NPC patients and 0/9 controls had a missing AI. AI length was significantly shorter in the patient group. No subject in other group had a large CSP, and CSP length did not differ. Duration of illness showed a trend to a negative correlation with AI length in patients. CONCLUSIONS: Our findings suggest that adult NPC patients show some markers of early neurodevelopmental disturbance, matching findings seen in psychotic disorders. The differences in AI, but not CSP, suggest neurodevelopmental change may occur early in gestation rather than post-partum. The relationship with duration of illness suggests that there may be atrophy over time in these structures, consistent with prior analyses of grey matter regions in NPC.

6.
Psychol Med ; 52(14): 3097-3115, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-33443010

RESUMEN

BACKGROUND: Cigarette smoking is associated with worse cognition and decreased cortical volume and thickness in healthy cohorts. Chronic cigarette smoking is prevalent in schizophrenia spectrum disorders (SSD), but the effects of smoking status on the brain and cognition in SSD are not clear. This study aimed to understand whether cognitive performance and brain morphology differed between smoking and non-smoking individuals with SSD compared to healthy controls. METHODS: Data were obtained from the Australian Schizophrenia Research Bank. Cognitive functioning was measured in 299 controls and 455 SSD patients. Cortical volume, thickness and surface area data were analysed from T1-weighted structural scans obtained in a subset of the sample (n = 82 controls, n = 201 SSD). Associations between smoking status (cigarette smoker/non-smoker), cognition and brain morphology were tested using analyses of covariance, including diagnosis as a moderator. RESULTS: No smoking by diagnosis interactions were evident, and no significant differences were revealed between smokers and non-smokers across any of the variables measured, with the exception of a significantly thinner left posterior cingulate in smokers compared to non-smokers. Several main effects of smoking in the cognitive, volume and thickness analyses were initially significant but did not survive false discovery rate (FDR) correction. CONCLUSIONS: Despite the general absence of significant FDR-corrected findings, trend-level effects suggest the possibility that subtle smoking-related effects exist but were not uncovered due to low statistical power. An investigation of this topic is encouraged to confirm and expand on our findings.


Asunto(s)
Encéfalo , Cognición , Esquizofrenia , Fumar , Humanos , Australia/epidemiología , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/epidemiología , Esquizofrenia/complicaciones , Fumar/efectos adversos , Fumar/epidemiología
7.
Mol Psychiatry ; 26(7): 3512-3523, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32963336

RESUMEN

The heterogeneity of schizophrenia has defied efforts to derive reproducible and definitive anatomical maps of structural brain changes associated with the disorder. We aimed to map deviations from normative ranges of brain structure for individual patients and evaluate whether the loci of individual deviations recapitulated group-average brain maps of schizophrenia pathology. For each of 48 white matter tracts and 68 cortical regions, normative percentiles of variation in fractional anisotropy (FA) and cortical thickness (CT) were established using diffusion-weighted and structural MRI from healthy adults (n = 195). Individuals with schizophrenia (n = 322) were classified as either within the normative range for healthy individuals of the same age and sex (5-95% percentiles), infra-normal (<5% percentile) or supra-normal (>95% percentile). Repeating this classification for each tract and region yielded a deviation map for each individual. Compared to the healthy comparison group, the schizophrenia group showed widespread reductions in FA and CT, involving virtually all white matter tracts and cortical regions. Paradoxically, however, no more than 15-20% of patients deviated from the normative range for any single tract or region. Furthermore, 79% of patients showed infra-normal deviations for at least one locus (healthy individuals: 59 ± 2%, p < 0.001). Thus, while infra-normal deviations were common among patients, their anatomical loci were highly inconsistent between individuals. Higher polygenic risk for schizophrenia associated with a greater number of regions with infra-normal deviations in CT (r = -0.17, p = 0.006). We conclude that anatomical loci of schizophrenia-related changes are highly heterogeneous across individuals to the extent that group-consensus pathological maps are not representative of most individual patients. Normative modeling can aid in parsing schizophrenia heterogeneity and guiding personalized interventions.


Asunto(s)
Esquizofrenia , Sustancia Blanca , Adulto , Anisotropía , Encéfalo/diagnóstico por imagen , Estudios Transversales , Humanos , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/genética , Sustancia Blanca/diagnóstico por imagen
8.
Eur Arch Psychiatry Clin Neurosci ; 272(6): 971-983, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34557990

RESUMEN

Episodic memory ability relies on hippocampal-prefrontal connectivity. However, few studies have examined relationships between memory performance and white matter (WM) microstructure in hippocampal-prefrontal pathways in schizophrenia-spectrum disorder (SSDs). Here, we investigated these relationships in individuals with first-episode psychosis (FEP) and chronic schizophrenia-spectrum disorders (SSDs) using tractography analysis designed to interrogate the microstructure of WM tracts in the hippocampal-prefrontal pathway. Measures of WM microstructure (fractional anisotropy [FA], radial diffusivity [RD], and axial diffusivity [AD]) were obtained for 47 individuals with chronic SSDs, 28 FEP individuals, 52 older healthy controls, and 27 younger healthy controls. Tractography analysis was performed between the hippocampus and three targets involved in hippocampal-prefrontal connectivity (thalamus, amygdala, nucleus accumbens). Measures of WM microstructure were then examined in relation to episodic memory performance separately across each group. Both those with FEP and chronic SSDs demonstrated impaired episodic memory performance. However, abnormal WM microstructure was only observed in individuals with chronic SSDs. Abnormal WM microstructure in the hippocampal-thalamic pathway in the right hemisphere was associated with poorer memory performance in individuals with chronic SSDs. These findings suggest that disruptions in WM microstructure in the hippocampal-prefrontal pathway may contribute to memory impairments in individuals with chronic SSDs but not FEP.


Asunto(s)
Memoria Episódica , Trastornos Psicóticos/complicaciones , Esquizofrenia/complicaciones , Sustancia Blanca/fisiología , Anisotropía , Estudios de Casos y Controles , Imagen de Difusión Tensora , Hipocampo/fisiología , Humanos , Trastornos de la Memoria/diagnóstico por imagen , Trastornos de la Memoria/etiología , Corteza Prefrontal/fisiología , Trastornos Psicóticos/diagnóstico por imagen , Esquizofrenia/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen
9.
Neuroimage ; 229: 117695, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33422711

RESUMEN

Connectomes are typically mapped at low resolution based on a specific brain parcellation atlas. Here, we investigate high-resolution connectomes independent of any atlas, propose new methodologies to facilitate their mapping and demonstrate their utility in predicting behavior and identifying individuals. Using structural, functional and diffusion-weighted MRI acquired in 1000 healthy adults, we aimed to map the cortical correlates of identity and behavior at ultra-high spatial resolution. Using methods based on sparse matrix representations, we propose a computationally feasible high-resolution connectomic approach that improves neural fingerprinting and behavior prediction. Using this high-resolution approach, we find that the multimodal cortical gradients of individual uniqueness reside in the association cortices. Furthermore, our analyses identified a striking dichotomy between the facets of a person's neural identity that best predict their behavior and cognition, compared to those that best differentiate them from other individuals. Functional connectivity was one of the most accurate predictors of behavior, yet resided among the weakest differentiators of identity; whereas the converse was found for morphological properties, such as cortical curvature. This study provides new insights into the neural basis of personal identity and new tools to facilitate ultra-high-resolution connectomics.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Conectoma/métodos , Imagen de Difusión Tensora/métodos , Red Nerviosa/diagnóstico por imagen , Encéfalo/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Red Nerviosa/fisiología , Adulto Joven
10.
Brain Behav Immun ; 95: 299-309, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33838248

RESUMEN

Deficits in brain morphology are one of the most widely replicated neuropathological features in schizophrenia-spectrum disorder (SSD), although their biological underpinnings remain unclear. Despite the existence of hypotheses by which peripheral inflammation may impact brain structure, few studies have examined this relationship in SSD. This study aimed to establish the relationship between peripheral markers of inflammation and brain morphology and determine whether such relationships differed across healthy controls and individuals with first episode psychosis (FEP) and chronic schizophrenia. A panel of 13 pro- and anti-inflammatory cytokines were quantified from serum in 175 participants [n = 84 Healthy Controls (HC), n = 40 FEP, n = 51 Chronic SCZ]. We first performed a series of permutation tests to identify the cytokines most consistently associated with brain structural regions. Using moderation analysis, we then determined the extent to which individual variation in select cytokines, and their interaction with diagnostic status, predicted variation in brain structure. We found significant interactions between cytokine level and diagnosis on brain structure. Diagnostic status significantly moderated the relationship of IFNγ, IL4, IL5 and IL13 with frontal thickness, and of IFNγ and IL5 and total cortical volume. Specifically, frontal thickness was positively associated with IFNγ, IL4, IL5 and IL13 cytokine levels in the healthy control group, whereas pro-inflammatory cytokines IFNγ and IL5 were associated with lower total cortical volume in the FEP group. Our findings suggest that while there were no relationships detected in chronic schizophrenia, the relationship between peripheral inflammatory markers and select brain regions are differentially impacted in FEP and healthy controls. Longitudinal investigations are required to determine whether the relationship between brain structure and peripheral inflammation changes over time.


Asunto(s)
Encéfalo/anatomía & histología , Citocinas , Esquizofrenia , Encéfalo/diagnóstico por imagen , Humanos , Inflamación , Imagen por Resonancia Magnética , Esquizofrenia/diagnóstico por imagen
11.
Eur Arch Psychiatry Clin Neurosci ; 271(4): 595-607, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33760971

RESUMEN

While the biological substrates of brain and behavioural changes in persons with schizophrenia remain unclear, increasing evidence implicates that inflammation is involved. In schizophrenia, including first-episode psychosis and anti-psychotic naïve patients, there are numerous reports of increased peripheral inflammation, cognitive deficits and neuropathologies such as cortical thinning. Research defining the relationship between inflammation and schizophrenia symptomatology and neuropathology is needed. Therefore, we analysed the level of C-reactive protein (CRP), a peripheral inflammation marker, and its relationship with cognitive functioning in a cohort of 644 controls and 499 schizophrenia patients. In a subset of individuals who underwent MRI scanning (99 controls and 194 schizophrenia cases), we tested if serum CRP was associated with cortical thickness. CRP was significantly increased in schizophrenia patients compared to controls, co-varying for age, sex, overweight/obesity and diabetes (p < 0.006E-10). In schizophrenia, increased CRP was mildly associated with worse performance in attention, controlling for age, sex and education (R =- 0.15, p = 0.001). Further, increased CRP was associated with reduced cortical thickness in three regions related to attention: the caudal middle frontal, the pars opercularis and the posterior cingulate cortices, which remained significant after controlling for multiple comparisons (all p < 0.05). Together, these findings indicate that increased peripheral inflammation is associated with deficits in cognitive function and brain structure in schizophrenia, especially reduced attention and reduced cortical thickness in associated brain regions. Using CRP as a biomarker of peripheral inflammation in persons with schizophrenia may help to identify vulnerable patients and those that may benefit from adjunctive anti-inflammatory treatments.


Asunto(s)
Esquizofrenia , Biomarcadores , Proteína C-Reactiva/análisis , Cognición , Humanos , Inflamación/diagnóstico por imagen , Imagen por Resonancia Magnética , Trastornos Psicóticos , Esquizofrenia/complicaciones , Esquizofrenia/diagnóstico por imagen
12.
Eur Arch Psychiatry Clin Neurosci ; 271(8): 1475-1485, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34467451

RESUMEN

Increased severity of neurological soft signs (NSS) in schizophrenia have been associated with abnormal brain morphology in cerebello-thalamo-cortical structures, but it is unclear whether similar structures underlie NSS prior to the onset of psychosis. The present study investigated the relationship between severity of NSS and grey matter volume (GMV) in individuals at ultra-high risk for psychosis (UHR) stratified for later conversion to psychosis. Structural T1-weighted MRI scans were obtained from 56 antipsychotic-naïve UHR individuals and 35 healthy controls (HC). The UHR individuals had follow-up data (mean follow-up: 5.2 years) to ascertain clinical outcome. Using whole-brain voxel-based morphometry, the relationship between NSS and GMV at baseline was assessed in UHR, HC, as well as individuals who later transitioned (UHR-P, n = 25) and did not transition (UHR-NP, n = 31) to psychosis. NSS total and subscale scores except motor coordination were significantly higher in UHR compared to HC. Higher signs were also found in UHR-P, but not UHR-NP. Total NSS was not associated with GMV in the whole sample or in each group. However, in UHR-P individuals, greater deficits in sensory integration was associated with lower GMV in the left cerebellum, right insula, and right middle frontal gyrus. In conclusion, NSS are present in UHR individuals, particularly those who later transitioned to a psychotic disorder. While these signs show little overall variation with GMV, the association of sensory integration deficits with lower GMV in UHR-P suggests that certain brain areas may be implicated in the development of specific neurological abnormalities in the psychosis prodrome.


Asunto(s)
Encéfalo , Trastornos Psicóticos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Humanos , Imagen por Resonancia Magnética , Tamaño de los Órganos , Trastornos Psicóticos/epidemiología , Medición de Riesgo
13.
Metab Brain Dis ; 36(7): 2071-2078, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34146215

RESUMEN

Hippocampal brain regions are strongly implicated in Niemann Pick type C disease (NPC), but little is known regarding distinct subregions of the hippocampal complex and whether these are equally or differentially affected. To address this gap, we compared volumes of five hippocampal subfields between NPC and healthy individuals using MRI. To this end, 9 adult-onset NPC cases and 9 age- and gender-matched controls underwent a 3 T T1-weighted MRI scan. Gray matter volumes of the cornu ammonis (CA1, CA2 and CA3), dentate gyrus (DG), subiculum, entorhinal cortex and hippocampal-amygdalar transition area were calculated by integrating MRI-based image intensities with microscopically defined cytoarchitectonic probabilities. Compared to healthy controls, NPC patients showed smaller volumes of the CA1-3 and DG regions bilaterally, with the greatest difference localized to the left DG (Cohen's d = 1.993, p = 0.008). No significant associations were shown between hippocampal subfield volumes and key clinical features of NPC, including disease duration, symptom severity and psychosis. The pattern of hippocampal subregional atrophy in NPC differs from those seen in other dementias, which may indicate unique cytoarchitectural vulnerabilities in this earlier-onset disorder. Future MRI studies of hippocampal subfields may clarify its potential as a biomarker of neurodegeneration in NPC.


Asunto(s)
Enfermedad de Niemann-Pick Tipo C , Adulto , Atrofia/patología , Estudios de Casos y Controles , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Humanos , Imagen por Resonancia Magnética/métodos , Enfermedad de Niemann-Pick Tipo C/diagnóstico por imagen
14.
Neuroimage ; 218: 116956, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32470572

RESUMEN

A common limitation of neuroimaging studies is their small sample sizes. To overcome this hurdle, the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Consortium combines neuroimaging data from many institutions worldwide. However, this introduces heterogeneity due to different scanning devices and sequences. ENIGMA projects commonly address this heterogeneity with random-effects meta-analysis or mixed-effects mega-analysis. Here we tested whether the batch adjustment method, ComBat, can further reduce site-related heterogeneity and thus increase statistical power. We conducted random-effects meta-analyses, mixed-effects mega-analyses and ComBat mega-analyses to compare cortical thickness, surface area and subcortical volumes between 2897 individuals with a diagnosis of schizophrenia and 3141 healthy controls from 33 sites. Specifically, we compared the imaging data between individuals with schizophrenia and healthy controls, covarying for age and sex. The use of ComBat substantially increased the statistical significance of the findings as compared to random-effects meta-analyses. The findings were more similar when comparing ComBat with mixed-effects mega-analysis, although ComBat still slightly increased the statistical significance. ComBat also showed increased statistical power when we repeated the analyses with fewer sites. Results were nearly identical when we applied the ComBat harmonization separately for cortical thickness, cortical surface area and subcortical volumes. Therefore, we recommend applying the ComBat function to attenuate potential effects of site in ENIGMA projects and other multi-site structural imaging work. We provide easy-to-use functions in R that work even if imaging data are partially missing in some brain regions, and they can be trained with one data set and then applied to another (a requirement for some analyses such as machine learning).


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Algoritmos , Corteza Cerebral/diagnóstico por imagen , Femenino , Humanos , Masculino , Metaanálisis como Asunto , Persona de Mediana Edad , Neuroimagen , Esquizofrenia/diagnóstico por imagen , Adulto Joven
15.
Hum Brain Mapp ; 41(12): 3342-3357, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32469448

RESUMEN

In a machine learning setting, this study aims to compare the prognostic utility of connectomic, brain structural, and clinical/demographic predictors of individual change in symptom severity in individuals with schizophrenia. Symptom severity at baseline and 1-year follow-up was assessed in 30 individuals with a schizophrenia-spectrum disorder using the Brief Psychiatric Rating Scale. Structural and functional neuroimaging was acquired in all individuals at baseline. Machine learning classifiers were trained to predict whether individuals improved or worsened with respect to positive, negative, and overall symptom severity. Classifiers were trained using various combinations of predictors, including regional cortical thickness and gray matter volume, static and dynamic resting-state connectivity, and/or baseline clinical and demographic variables. Relative change in overall symptom severity between baseline and 1-year follow-up varied markedly among individuals (interquartile range: 55%). Dynamic resting-state connectivity measured within the default-mode network was the most accurate single predictor of change in positive (accuracy: 87%), negative (83%), and overall symptom severity (77%) at follow-up. Incorporating predictors based on regional cortical thickness, gray matter volume, and baseline clinical variables did not markedly improve prediction accuracy and the prognostic utility of these predictors in isolation was moderate (<70%). Worsening negative symptoms at 1-year follow-up were predicted by hyper-connectivity and hypo-dynamism within the default-mode network at baseline assessment, while hypo-connectivity and hyper-dynamism predicted worsening positive symptoms. Given the modest sample size investigated, we recommend giving precedence to the relative ranking of the predictors investigated in this study, rather than the prediction accuracy estimates.


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Red en Modo Predeterminado/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Aprendizaje Automático , Neuroimagen/métodos , Esquizofrenia/diagnóstico por imagen , Adulto , Antipsicóticos/administración & dosificación , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Conectoma/métodos , Conectoma/normas , Red en Modo Predeterminado/patología , Red en Modo Predeterminado/fisiopatología , Femenino , Estudios de Seguimiento , Sustancia Gris/patología , Sustancia Gris/fisiopatología , Humanos , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/normas , Masculino , Neuroimagen/normas , Pronóstico , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/patología , Esquizofrenia/fisiopatología , Sensibilidad y Especificidad , Índice de Severidad de la Enfermedad , Adulto Joven
16.
Psychol Med ; 50(9): 1475-1489, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31274065

RESUMEN

BACKGROUND: In schizophrenia, relative stability in the magnitude of cognitive deficits across age and illness duration is inconsistent with the evidence of accelerated deterioration in brain regions known to support these functions. These discrepant brain-cognition outcomes may be explained by variability in cognitive reserve (CR), which in neurological disorders has been shown to buffer against brain pathology and minimize its impact on cognitive or clinical indicators of illness. METHODS: Age-related change in fluid reasoning, working memory and frontal brain volume, area and thickness were mapped using regression analysis in 214 individuals with schizophrenia or schizoaffective disorder and 168 healthy controls. In patients, these changes were modelled as a function of CR. RESULTS: Patients showed exaggerated age-related decline in brain structure, but not fluid reasoning compared to controls. In the patient group, no moderation of age-related brain structural change by CR was evident. However, age-related cognitive change was moderated by CR, such that only patients with low CR showed evidence of exaggerated fluid reasoning decline that paralleled the exaggerated age-related deterioration of underpinning brain structures seen in all patients. CONCLUSIONS: In schizophrenia-spectrum illness, CR may negate ageing effects on fluid reasoning by buffering against pathologically exaggerated structural brain deterioration through some form of compensation. CR may represent an important modifier that could explain inconsistencies in brain structure - cognition outcomes in the extant literature.


Asunto(s)
Encéfalo/diagnóstico por imagen , Reserva Cognitiva/fisiología , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/psicología , Esquizofrenia/diagnóstico por imagen , Psicología del Esquizofrénico , Adulto , Factores de Edad , Encéfalo/patología , Estudios de Casos y Controles , Femenino , Humanos , Inteligencia/fisiología , Imagen por Resonancia Magnética , Masculino , Memoria a Corto Plazo/fisiología , Persona de Mediana Edad , Análisis de Regresión
17.
Psychol Med ; 49(14): 2452-2462, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30511607

RESUMEN

BACKGROUND: While previous studies have identified relationships between hippocampal volumes and memory performance in schizophrenia, these relationships are not apparent in healthy individuals. Further, few studies have examined the role of hippocampal subfields in illness-related memory deficits, and no study has examined potential differences across varying illness stages. The current study aimed to investigate whether individuals with early and established psychosis exhibited differential relationships between visuospatial associative memory and hippocampal subfield volumes. METHODS: Measurements of visuospatial associative memory performance and grey matter volume were obtained from 52 individuals with a chronic schizophrenia-spectrum disorder, 28 youth with recent-onset psychosis, 52 older healthy controls, and 28 younger healthy controls. RESULTS: Both chronic and recent-onset patients had impaired visuospatial associative memory performance, however, only chronic patients showed hippocampal subfield volume loss. Both chronic and recent-onset patients demonstrated relationships between visuospatial associative memory performance and hippocampal subfield volumes in the CA4/dentate gyrus and the stratum that were not observed in older healthy controls. There were no group by volume interactions when chronic and recent-onset patients were compared. CONCLUSIONS: The current study extends the findings of previous studies by identifying particular hippocampal subfields, including the hippocampal stratum layers and the dentate gyrus, that appear to be related to visuospatial associative memory ability in individuals with both chronic and first-episode psychosis.


Asunto(s)
Hipocampo/patología , Trastornos Psicóticos/patología , Esquizofrenia/patología , Memoria Espacial , Adolescente , Adulto , Envejecimiento/patología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tamaño de los Órganos , Escalas de Valoración Psiquiátrica , Trastornos Psicóticos/diagnóstico por imagen , Esquizofrenia/diagnóstico por imagen , Percepción Visual , Adulto Joven
19.
Aust N Z J Psychiatry ; 52(9): 864-875, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29806483

RESUMEN

INTRODUCTION: Schizophrenia is increasingly conceived as a disorder of brain network connectivity and organization. However, reports of network abnormalities during the early illness stage of psychosis are mixed. This study adopted a data-driven whole-brain approach to investigate functional connectivity and network architecture in a first-episode psychosis cohort relative to healthy controls and whether functional network properties changed abnormally over a 12-month period in first-episode psychosis. METHODS: Resting-state functional connectivity was performed at two time points. At baseline, 29 first-episode psychosis individuals and 30 healthy controls were assessed, and at 12 months, 14 first-episode psychosis individuals and 20 healthy controls completed follow-up. Whole-brain resting-state functional connectivity networks were mapped for each individual and analyzed using graph theory to investigate whether network abnormalities associated with first-episode psychosis were evident and whether functional network properties changed abnormally over 12 months relative to controls. RESULTS: This study found no evidence of abnormal resting-state functional connectivity or topology in first-episode psychosis individuals relative to healthy controls at baseline or at 12-months follow-up. Furthermore, longitudinal changes in network properties over a 12-month period did not significantly differ between first-episode psychosis individuals and healthy control. Network measures did not significantly correlate with symptomatology, duration of illness or antipsychotic medication. CONCLUSIONS: This is the first study to show unaffected resting-state functional connectivity and topology in the early psychosis stage of illness. In light of previous literature, this suggests that a subgroup of first-episode psychosis individuals who have a neurotypical resting-state functional connectivity and topology may exist. Our preliminary longitudinal analyses indicate that there also does not appear to be deterioration in these network properties over a 12-month period. Future research in a larger sample is necessary to confirm our longitudinal findings.


Asunto(s)
Encéfalo/fisiopatología , Vías Nerviosas/fisiopatología , Trastornos Psicóticos/fisiopatología , Estudios de Casos y Controles , Femenino , Estudios de Seguimiento , Neuroimagen Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
20.
Aust N Z J Psychiatry ; 51(5): 455-476, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27733710

RESUMEN

OBJECTIVE: This review critically examines the structural neuroimaging evidence in psychotic illness, with a focus on longitudinal imaging across the first-episode psychosis and ultra-high-risk of psychosis illness stages. METHODS: A thorough search of the literature involving specifically longitudinal neuroimaging in early illness stages of psychosis was conducted. The evidence supporting abnormalities in brain morphology and altered neurodevelopmental trajectories is discussed in the context of a clinical staging model. RESULTS: In general, grey matter (and, to a lesser extent, white matter) declines across multiple frontal, temporal (especially superior regions), insular and parietal regions during the first episode of psychosis, which has a steeper trajectory than that of age-matched healthy counterparts. Although the ultra-high-risk of psychosis literature is considerably mixed, evidence indicates that certain volumetric structural aberrations predate psychotic illness onset (e.g. prefrontal cortex thinning), while other abnormalities present in ultra-high-risk of psychosis populations are potentially non-psychosis-specific (e.g. hippocampal volume reductions). CONCLUSION: We highlight the advantages of longitudinal designs, discuss the implications such studies have on clinical staging and provide directions for future research.


Asunto(s)
Encéfalo/diagnóstico por imagen , Progresión de la Enfermedad , Neuroimagen/métodos , Trastornos Psicóticos/diagnóstico por imagen , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA