Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Blood ; 113(11): 2535-46, 2009 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-19139076

RESUMEN

Granulocyte colony-stimulating factor receptor (GCSFR) signaling participates in the production of neutrophilic granulocytes during normal hematopoietic development, with a particularly important role during emergency hematopoiesis. This study describes the characterization of the zebrafish gcsf and gcsfr genes, which showed broad conservation and similar regulation to their mammalian counterparts. Morpholino-mediated knockdown of gcsfr and overexpression of gcsf revealed the presence of an anterior population of myeloid cells during primitive hematopoiesis that was dependent on GCSF/GCSFR for development and migration. This contrasted with a posterior domain that was largely independent of this pathway. Definitive myelopoiesis was also partially dependent on a functional GCSF/GCSFR pathway. Injection of bacterial lipopolysaccharide elicited significant induction of gcsf expression and emergency production of myeloid cells, which was abrogated by gcsfr knockdown. Collectively, these data demonstrate GCSF/GCSFR to be a conserved signaling system for facilitating the production of multiple myeloid cell lineages in both homeostatic and emergency conditions, as well as for early myeloid cell migration, establishing a useful experimental platform for further dissection of this pathway.


Asunto(s)
Movimiento Celular/genética , Células Mieloides/fisiología , Mielopoyesis/genética , Receptores de Factor Estimulante de Colonias de Granulocito/genética , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Hematopoyesis/genética , Datos de Secuencia Molecular , Células Mieloides/metabolismo , Células Progenitoras Mieloides/metabolismo , Células Progenitoras Mieloides/fisiología , Filogenia , Receptores de Factor Estimulante de Colonias de Granulocito/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocito/fisiología , Homología de Secuencia de Aminoácido , Transducción de Señal/genética , Pez Cebra/embriología , Pez Cebra/fisiología
2.
Circ Res ; 104(8): 952-60, 2009 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-19265037

RESUMEN

Lipid accumulation in arteries induces vascular inflammation and atherosclerosis, the major cause of heart attack and stroke in humans. Extreme hyperlipidemia induced in mice and rabbits enables modeling many aspects of human atherosclerosis, but microscopic examination of plaques is possible only postmortem. Here we report that feeding adult zebrafish (Danio rerio) a high-cholesterol diet (HCD) resulted in hypercholesterolemia, remarkable lipoprotein oxidation, and fatty streak formation in the arteries. Feeding an HCD supplemented with a fluorescent cholesteryl ester to optically transparent fli1:EGFP zebrafish larvae in which endothelial cells express green fluorescent protein (GFP), and using confocal microscopy enabled monitoring vascular lipid accumulation and the endothelial cell layer disorganization and thickening in a live animal. The HCD feeding also increased leakage of a fluorescent dextran from the blood vessels. Administering ezetimibe significantly diminished the HCD-induced endothelial cell layer thickening and improved its barrier function. Feeding HCD to lyz:DsRed2 larvae in which macrophages and granulocytes express DsRed resulted in the accumulation of fluorescent myeloid cells in the vascular wall. Using a fluorogenic substrate for phospholipase A(2) (PLA(2)), we observed an increased vascular PLA(2) activity in live HCD-fed larvae compared to control larvae. Furthermore, by transplanting genetically modified murine cells into HCD-fed larvae, we demonstrated that toll-like receptor-4 was required for efficient in vivo lipid uptake by macrophages. These results suggest that the novel zebrafish model is suitable for studying temporal characteristics of certain inflammatory processes of early atherogenesis and the in vivo function of vascular cells.


Asunto(s)
Aterosclerosis/metabolismo , Endotelio Vascular/metabolismo , Hipercolesterolemia/metabolismo , Metabolismo de los Lípidos , Lipoproteínas/metabolismo , Macrófagos/metabolismo , Pez Cebra/metabolismo , Factores de Edad , Envejecimiento/metabolismo , Animales , Animales Modificados Genéticamente , Anticolesterolemiantes/farmacología , Aterosclerosis/etiología , Aterosclerosis/patología , Azetidinas/farmacología , Línea Celular , Colesterol en la Dieta/administración & dosificación , Modelos Animales de Enfermedad , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/patología , Ezetimiba , Femenino , Proteínas Fluorescentes Verdes/genética , Humanos , Hipercolesterolemia/etiología , Hipercolesterolemia/patología , Larva/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Lipoproteínas/sangre , Proteínas Luminiscentes/genética , Macrófagos/trasplante , Masculino , Ratones , Microscopía Confocal , Oxidación-Reducción , Permeabilidad , Fosfolipasas A2/metabolismo , Factores de Tiempo , Receptor Toll-Like 4/metabolismo , Pez Cebra/embriología , Pez Cebra/genética
3.
Methods Mol Biol ; 546: 255-71, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19378109

RESUMEN

Zebrafish are ideally suited for the live imaging of early immune cell compartments. Macrophages that initially appear on the yolk surface prior to the onset of circulation are the first functional immune cells within the embryo, predating the emergence of the first granulocytic cells-the heterophilic neutrophils. Both cell types have been shown in zebrafish to contribute to a robust early innate immune system, capable of clearing systemic infections and participating in wound healing. Early imaging of these cells within zebrafish relied on differential interference contrast (DIC) optics because of their superficial locations in the embryo and the optical transparency of embryonic tissues. Recently, the creation of a number of transgenic reporter lines possessing fluorescently marked myelomonocytic compartments provides the potential to live image these cells during the inflammatory response, in real-time, within a whole animal context. Live imaging during the different stages of inflammation using this expanding library of reporter lines, coupled with the ability to model aspects of human disease in the zebrafish system, have the potential to provide significant insights into inflammation and diseases associated with its dysregulation.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Leucocitos/patología , Pez Cebra/embriología , Pez Cebra/inmunología , Animales , Compartimento Celular , Modelos Animales de Enfermedad , Genes Reporteros , Humanos , Procesamiento de Imagen Asistido por Computador/instrumentación , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Leucocitos/inmunología , Leucocitos/metabolismo , Proteínas Luminiscentes , Microscopía Confocal , Proteínas Recombinantes de Fusión/biosíntesis , Pez Cebra/metabolismo
4.
BMC Dev Biol ; 7: 42, 2007 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-17477879

RESUMEN

BACKGROUND: How different immune cell compartments contribute to a successful immune response is central to fully understanding the mechanisms behind normal processes such as tissue repair and the pathology of inflammatory diseases. However, the ability to observe and characterize such interactions, in real-time, within a living vertebrate has proved elusive. Recently, the zebrafish has been exploited to model aspects of human disease and to study specific immune cell compartments using fluorescent reporter transgenic lines. A number of blood-specific lines have provided a means to exploit the exquisite optical clarity that this vertebrate system offers and provide a level of insight into dynamic inflammatory processes previously unavailable. RESULTS: We used regulatory regions of the zebrafish lysozyme C (lysC) gene to drive enhanced green fluorescent protein (EGFP) and DsRED2 expression in a manner that completely recapitulated the endogenous expression profile of lysC. Labeled cells were shown by co-expression studies and FACS analysis to represent a subset of macrophages and likely also granulocytes. Functional assays within transgenic larvae proved that these marked cells possess hallmark traits of myelomonocytic cells, including the ability to migrate to inflammatory sources and phagocytose bacteria. CONCLUSION: These reporter lines will have utility in dissecting the genetic determinants of commitment to the myeloid lineage and in further defining how lysozyme-expressing cells participate during inflammation.


Asunto(s)
Animales Modificados Genéticamente/genética , Regulación del Desarrollo de la Expresión Génica , Muramidasa/genética , Células Mieloides/citología , Regiones Promotoras Genéticas/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente/metabolismo , Linaje de la Célula , Clonación Molecular , Embrión no Mamífero , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Hibridación in Situ , Muramidasa/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
5.
Mech Dev ; 123(12): 925-40, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17011755

RESUMEN

The vertebrate craniofacial skeleton develops via a complex process involving signaling cascades in all three germ layers. Fibroblast growth factor (FGF) signaling is essential for several steps in pharyngeal arch development. In zebrafish, Fgf3 and Fgf8 in the mesoderm and hindbrain have an early role to pattern the pouch endoderm, influencing craniofacial integrity. Endodermal FGF signaling is required for the differentiation and survival of postmigratory neural crest cells that form the pharyngeal skeleton. We identify a novel role for zebrafish Fgf receptor-like 1a (Fgfrl1a) that is indispensable during gill cartilage development. We show that depletion of Fgfrl1a is sufficient to abolish cartilage derivatives of the ceratobranchials. Using an Fgfrl1a-deficient model, we analyzed expression of genes critical for chondrogenesis in the different compartments of the developing pharyngeal arch. Fgfrl1a-depleted animals demonstrate typical neural crest specification and migration to populate the arch primordia as well as normal pouch segmentation. However, in the absence of Fgfrl1a, larvae fail to express the transcription factor glial cells missing 2 (gcm2), a gene necessary for cartilage and gill filament formation, in the ectodermal lining of the branchial arches. In addition, two transcription factors essential for chondrogenesis, sox9a and runx2b, fail to express within the mesenchymal condensations of the branchial arches. A duplicate zebrafish gene, fgfrl1b, has now been identified. We show that Fgfrl1b is also required for proper formation of all ventral cartilage elements and acts cooperatively with Fgfrl1a during gill cartilage formation.


Asunto(s)
Cartílago/embriología , Branquias/embriología , Receptores de Factores de Crecimiento de Fibroblastos/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Secuencia de Aminoácidos , Animales , Región Branquial/química , Región Branquial/embriología , Cartílago/química , Movimiento Celular/genética , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ectodermo/química , Ectodermo/metabolismo , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/genética , Branquias/química , Proteínas HMGB/análisis , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Datos de Secuencia Molecular , Cresta Neural/citología , Filogenia , Receptores de Factores de Crecimiento de Fibroblastos/análisis , Receptores de Factores de Crecimiento de Fibroblastos/genética , Factor de Transcripción SOX9 , Factores de Transcripción/análisis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/análisis , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
6.
Mol Immunol ; 69: 113-22, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26563946

RESUMEN

Hematopoietic stem cells (HSCs) are rare, largely dormant, long-lived cells that are capable of establishing and regenerating all mature blood cell lineages throughout the life of the host. Given their therapeutic importance, understanding factors that regulate HSC development and influence HSC proliferation and differentiation is of great interest. Exploring HSC biology through the lens of infection has altered our traditional view of the HSC. The HSC can now be considered a component of the immune response to infection. In response to inflammatory cytokine signaling, HSCs enhance their proliferative state and contribute to the production of in-demand blood cell lineages. Similar cytokine signaling pathways also participate during embryonic HSC production. With its highly conserved hematopoietic system and experimental tractability, the zebrafish model has made significant contributions to the hematopoietic field. In particular, the zebrafish system has been ideally suited to help reveal the molecular and cellular mechanisms underlying HSC development. This review highlights recent zebrafish studies that have uncovered new mechanistic insights into how inflammatory signaling pathways influence HSC behavior during infection and HSC production within the embryo.


Asunto(s)
Hematopoyesis/inmunología , Células Madre Hematopoyéticas/citología , Infecciones/inmunología , Pez Cebra/embriología , Pez Cebra/inmunología , Animales , Citocinas/inmunología , Inflamación/inmunología
7.
J Leukoc Biol ; 85(5): 751-65, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19218482

RESUMEN

The immune response of a host to an invading pathogen is dependent on the capacity of its immune cell compartment to recognize highly conserved pathogen components using an ancient class of pattern recognition receptors known as Toll-like receptors (TLRs). Initiation of TLR-mediated signaling results in the induction of proinflammatory cytokines that help govern the scale and duration of any ensuing response. Specificity for TLR signaling is, in part, a result of the differential recruitment of intracellular adaptor molecules. Of these, MyD88 is required for the majority of TLR signaling. Zebrafish have been shown to possess TLRs and adaptor molecules throughout early development, including MyD88, strongly suggesting conservation of this ancient defense mechanism. However, information about which embryonic cells/tissues possess this conserved signaling potential is lacking. To help define which embryonic cells, in particular, those of the innate immune system, have the potential for MyD88-dependent, TLR-mediated signaling, we generated transgenic reporter lines using regulatory elements of the myd88 gene to drive the fluorescent reporters enhanced GFP and Discosoma red fluorescent protein 2 within live zebrafish. These lines possess fluorescently marked cells/tissues consistent with endogenous myd88 expression, including a subset of myeloid leukocytes. These innate immune cells were confirmed to express other TLR adaptors including Mal, trif, and Sarm. Live wound-healing and infection assays validated the potential of these myd88-expressing leukocytes to participate in immune responses. These lines will provide a valuable resource for further resolving the contribution of MyD88 to early vertebrate immunity.


Asunto(s)
Leucocitos/inmunología , Factor 88 de Diferenciación Mieloide/metabolismo , Transducción de Señal , Receptores Toll-Like/metabolismo , Pez Cebra/inmunología , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/inmunología , Infecciones Bacterianas/inmunología , Embrión no Mamífero/citología , Embrión no Mamífero/inmunología , Técnica del Anticuerpo Fluorescente , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/metabolismo , Células Mieloides/inmunología , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/inmunología , Fagocitosis , Regiones Promotoras Genéticas , Receptores Toll-Like/inmunología , Cicatrización de Heridas/inmunología , Pez Cebra/genética
8.
J Cell Sci ; 121(Pt 19): 3196-206, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18782862

RESUMEN

Wiskott-Aldrich syndrome protein (WASp) is haematopoietically restricted, and is the causative protein underlying a severe human disorder that can lead to death due to immunodeficiency and haemorrhaging. Much is known about the biochemistry of WASp and the migratory capacity of WASp-defective cells in vitro, but in vivo studies of immune-cell behaviour are more challenging. Using the translucency of zebrafish larvae, we live-imaged the effects of morpholino knockdown of WASp1 (also known as Was) on leukocyte migration in response to a wound. In embryos at 22 hours post-fertilisation, primitive macrophages were impaired in their migration towards laser wounds. Once a circulatory system had developed, at 3 days post-fertilisation, we observed significantly reduced recruitment of neutrophils and macrophages to ventral fin wounds. Cell-tracking studies indicated that fewer leukocytes leave the vessels adjacent to a wound and those that do exhibit impaired navigational capacity. Their cell morphology appears unaltered but their choice of leading-edge pseudopodia is more frequently incorrect, leading to impaired chemotaxis. We also identified two zebrafish mutants in WASp1 by TILLING, one of which was in the WIP-binding domain that is the hotspot for human lesions, and mutants exhibited the same deficiencies in wound inflammation and thrombus formation as WASp1 morphants.


Asunto(s)
Inflamación/metabolismo , Microscopía de Interferencia , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Heridas y Lesiones/metabolismo , Heridas y Lesiones/patología , Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Coagulación Sanguínea/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Quimiotaxis de Leucocito/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Hematopoyesis/efectos de los fármacos , Larva/efectos de los fármacos , Larva/metabolismo , Leucocitos/citología , Leucocitos/efectos de los fármacos , Macrófagos/citología , Macrófagos/efectos de los fármacos , Datos de Secuencia Molecular , Mutación/genética , Neutrófilos/citología , Neutrófilos/efectos de los fármacos , Oligonucleótidos Antisentido/farmacología , Cola (estructura animal)/patología , Cola (estructura animal)/ultraestructura , Factores de Tiempo , Proteína del Síndrome de Wiskott-Aldrich/química , Pez Cebra/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA