Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Development ; 149(21)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36205097

RESUMEN

Lymphangiogenesis is a dynamic process that involves the directed migration of lymphatic endothelial cells (LECs) to form lymphatic vessels. The molecular mechanisms that underpin lymphatic vessel patterning are not fully elucidated and, to date, no global regulator of lymphatic vessel guidance is known. In this study, we identify the transmembrane cell signalling receptor Plexin D1 (Plxnd1) as a negative regulator of both lymphatic vessel guidance and lymphangiogenesis in zebrafish. plxnd1 is expressed in developing lymphatics and is required for the guidance of both the trunk and facial lymphatic networks. Loss of plxnd1 is associated with misguided intersegmental lymphatic vessel growth and aberrant facial lymphatic branches. Lymphatic guidance in the trunk is mediated, at least in part, by the Plxnd1 ligands, Semaphorin 3AA and Semaphorin 3C. Finally, we show that Plxnd1 normally antagonises Vegfr/Erk signalling to ensure the correct number of facial LECs and that loss of plxnd1 results in facial lymphatic hyperplasia. As a global negative regulator of lymphatic vessel development, the Sema/Plxnd1 signalling pathway is a potential therapeutic target for treating diseases associated with dysregulated lymphatic growth.


Asunto(s)
Vasos Linfáticos , Semaforinas , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Células Endoteliales/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Linfangiogénesis/genética , Vasos Linfáticos/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Proteínas Portadoras/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
2.
Genes Dev ; 29(15): 1618-30, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26253536

RESUMEN

The lymphatic vasculature plays roles in tissue fluid balance, immune cell trafficking, fatty acid absorption, cancer metastasis, and cardiovascular disease. Lymphatic vessels form by lymphangiogenesis, the sprouting of new lymphatics from pre-existing vessels, in both development and disease contexts. The apical signaling pathway in lymphangiogenesis is the VEGFC/VEGFR3 pathway, yet how signaling controls cellular transcriptional output remains unknown. We used a forward genetic screen in zebrafish to identify the transcription factor mafba as essential for lymphatic vessel development. We found that mafba is required for the migration of lymphatic precursors after their initial sprouting from the posterior cardinal vein. mafba expression is enriched in sprouts emerging from veins, and we show that mafba functions cell-autonomously during lymphatic vessel development. Mechanistically, Vegfc signaling increases mafba expression to control downstream transcription, and this regulatory relationship is dependent on the activity of SoxF transcription factors, which are essential for mafba expression in venous endothelium. Here we identify an indispensable Vegfc-SoxF-Mafba pathway in lymphatic development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Linfangiogénesis/genética , Vasos Linfáticos/embriología , Factor de Transcripción MafB/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal , Factor C de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Movimiento Celular/genética , Embrión no Mamífero , Factor de Transcripción MafB/genética , Mutación , Proteínas del Tejido Nervioso/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
3.
EMBO Rep ; 20(5)2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30877134

RESUMEN

Lymphatic vessels are known to be derived from veins; however, recent lineage-tracing experiments propose that specific lymphatic networks may originate from both venous and non-venous sources. Despite this, direct evidence of a non-venous lymphatic progenitor is missing. Here, we show that the zebrafish facial lymphatic network is derived from three distinct progenitor populations that add sequentially to the developing facial lymphatic through a relay-like mechanism. We show that while two facial lymphatic progenitor populations are venous in origin, the third population, termed the ventral aorta lymphangioblast (VA-L), does not sprout from a vessel; instead, it arises from a migratory angioblast cell near the ventral aorta that initially lacks both venous and lymphatic markers, and contributes to the facial lymphatics and the hypobranchial artery. We propose that sequential addition of venous and non-venous progenitors allows the facial lymphatics to form in an area that is relatively devoid of veins. Overall, this study provides conclusive, live imaging-based evidence of a non-venous lymphatic progenitor and demonstrates that the origin and development of lymphatic vessels is context-dependent.


Asunto(s)
Vasos Linfáticos/fisiología , Células Madre/fisiología , Venas/fisiología , Pez Cebra/fisiología , Animales , Movimiento Celular/fisiología , Células Endoteliales/fisiología
4.
Nature ; 517(7536): 612-5, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25470057

RESUMEN

Pathogenic mycobacteria induce the formation of complex cellular aggregates called granulomas that are the hallmark of tuberculosis. Here we examine the development and consequences of vascularization of the tuberculous granuloma in the zebrafish-Mycobacterium marinum infection model, which is characterized by organized granulomas with necrotic cores that bear striking resemblance to those of human tuberculosis. Using intravital microscopy in the transparent larval zebrafish, we show that granuloma formation is intimately associated with angiogenesis. The initiation of angiogenesis in turn coincides with the generation of local hypoxia and transcriptional induction of the canonical pro-angiogenic molecule Vegfaa. Pharmacological inhibition of the Vegf pathway suppresses granuloma-associated angiogenesis, reduces infection burden and limits dissemination. Moreover, anti-angiogenic therapies synergize with the first-line anti-tubercular antibiotic rifampicin, as well as with the antibiotic metronidazole, which targets hypoxic bacterial populations. Our data indicate that mycobacteria induce granuloma-associated angiogenesis, which promotes mycobacterial growth and increases spread of infection to new tissue sites. We propose the use of anti-angiogenic agents, now being used in cancer regimens, as a host-targeting tuberculosis therapy, particularly in extensively drug-resistant disease for which current antibiotic regimens are largely ineffective.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium marinum/efectos de los fármacos , Mycobacterium marinum/crecimiento & desarrollo , Neovascularización Patológica/microbiología , Transducción de Señal/efectos de los fármacos , Pez Cebra/microbiología , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Antibióticos Antituberculosos/farmacología , Carga Bacteriana/efectos de los fármacos , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Granuloma/tratamiento farmacológico , Granuloma/metabolismo , Granuloma/microbiología , Granuloma/patología , Hipoxia/metabolismo , Hipoxia/microbiología , Hipoxia/patología , Larva/efectos de los fármacos , Larva/microbiología , Macrófagos/metabolismo , Macrófagos/microbiología , Macrófagos/patología , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/metabolismo , Infecciones por Mycobacterium no Tuberculosas/patología , Mycobacterium marinum/patogenicidad , Neovascularización Patológica/tratamiento farmacológico , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Tuberculosis/patología , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/crecimiento & desarrollo
5.
Development ; 141(13): 2680-90, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24903752

RESUMEN

Lymphangiogenesis is a dynamic process that involves the sprouting of lymphatic endothelial cells (LECs) from veins to form lymphatic vessels. Vegfr3 signalling, through its ligand Vegfc and the extracellular protein Ccbe1, is essential for the sprouting of LECs to form the trunk lymphatic network. In this study we determined whether Vegfr3, Vegfc and Ccbe1 are also required for development of the facial and intestinal lymphatic networks in the zebrafish embryo. Whereas Vegfr3 and Ccbe1 are required for the development of all lymphatic vessels, Vegfc is dispensable for facial lymphatic sprouting but not for the complete development of the facial lymphatic network. We show that zebrafish vegfd is expressed in the head, genetically interacts with ccbe1 and can rescue the lymphatic defects observed following the loss of vegfc. Finally, whereas knockdown of vegfd has no phenotype, double knockdown of both vegfc and vegfd is required to prevent facial lymphatic sprouting, suggesting that Vegfc is not essential for all lymphatic sprouting and that Vegfd can compensate for loss of Vegfc during lymphatic development in the zebrafish head.


Asunto(s)
Linfangiogénesis/fisiología , Factor C de Crecimiento Endotelial Vascular/deficiencia , Factor D de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Proteínas de Unión al Calcio/metabolismo , Cartilla de ADN/genética , Hibridación in Situ , Linfangiogénesis/genética , Microscopía Confocal , Morfolinos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estadísticas no Paramétricas
6.
Hum Mol Genet ; 23(5): 1286-97, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24163130

RESUMEN

Mutations in SOX18, VEGFC and Vascular Endothelial Growth Factor 3 underlie the hereditary lymphatic disorders hypotrichosis-lymphedema-telangiectasia (HLT), Milroy-like lymphedema and Milroy disease, respectively. Genes responsible for hereditary lymphedema are key regulators of lymphatic vascular development in the embryo. To identify novel modulators of lymphangiogenesis, we used a mouse model of HLT (Ragged Opossum) and performed gene expression profiling of aberrant dermal lymphatic vessels. Expression studies and functional analysis in zebrafish and mice revealed one candidate, ArfGAP with RhoGAP domain, Ankyrin repeat and PH domain 3 (ARAP3), which is down-regulated in HLT mouse lymphatic vessels and necessary for lymphatic vascular development in mice and zebrafish. We position this known regulator of cell behaviour during migration as a mediator of the cellular response to Vegfc signalling in lymphatic endothelial cells in vitro and in vivo. Our data refine common mechanisms that are likely to contribute during both development and the pathogenesis of lymphatic vascular disorders.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Activadoras de GTPasa/genética , Regulación de la Expresión Génica , Hipotricosis/genética , Linfangiogénesis/genética , Linfedema/genética , Telangiectasia/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Movimiento Celular/genética , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Femenino , Proteínas Activadoras de GTPasa/metabolismo , Vasos Linfáticos/metabolismo , Ratones , Ratones Noqueados , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo , Síndrome , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra
7.
Ophthalmology ; 123(4): 709-22, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26786512

RESUMEN

PURPOSE: Corneal dystrophies are a genetically heterogeneous group of disorders. We previously described a family with an autosomal dominant epithelial recurrent erosion dystrophy (ERED). We aimed to identify the underlying genetic cause of ERED in this family and 3 additional ERED families. We sought to characterize the potential function of the candidate genes using the human and zebrafish cornea. DESIGN: Case series study of 4 white families with a similar ERED. An experimental study was performed on human and zebrafish tissue to examine the putative biological function of candidate genes. PARTICIPANTS: Four ERED families, including 28 affected and 17 unaffected individuals. METHODS: HumanLinkage-12 arrays (Illumina, San Diego, CA) were used to genotype 17 family members. Next-generation exome sequencing was performed on an uncle-niece pair. Segregation of potential causative mutations was confirmed using Sanger sequencing. Protein expression was determined using immunohistochemistry in human and zebrafish cornea. Gene expression in zebrafish was assessed using whole-mount in situ hybridization. Morpholino-induced transient gene knockdown was performed in zebrafish embryos. MAIN OUTCOME MEASURES: Linkage microarray, exome analysis, DNA sequence analysis, immunohistochemistry, in situ hybridization, and morpholino-induced genetic knockdown results. RESULTS: Linkage microarray analysis identified a candidate region on chromosome chr10:12,576,562-112,763,135, and exploration of exome sequencing data identified 8 putative pathogenic variants in this linkage region. Two variants segregated in 06NZ-TRB1 with ERED: COL17A1 c.3156C→T and DNAJC9 c.334G→A. The COL17A1 c.3156C→T variant segregated in all 4 ERED families. We showed biologically relevant expression of these proteins in human cornea. Both proteins are expressed in the cornea of zebrafish embryos and adults. Zebrafish lacking Col17a1a and Dnajc9 during development show no gross corneal phenotype. CONCLUSIONS: The COL17A1 c.3156C→T variant is the likely causative mutation in our recurrent corneal erosion families, and its presence in 4 independent families suggests that it is prevalent in ERED. This same COL17A1 c.3156C→T variant recently was identified in a separate pedigree with ERED. Our study expands the phenotypic spectrum of COL17A1 disease from autosomal recessive epidermolysis bullosa to autosomal dominant ERED and identifies COL17A1 as a key protein in maintaining integrity of the corneal epithelium.


Asunto(s)
Empalme Alternativo/genética , Autoantígenos/genética , Distrofias Hereditarias de la Córnea/genética , Epitelio Corneal/patología , Mutación , Colágenos no Fibrilares/genética , Polimorfismo de Nucleótido Simple , Adolescente , Adulto , Anciano , Animales , Niño , Distrofias Hereditarias de la Córnea/diagnóstico , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica/fisiología , Silenciador del Gen , Ligamiento Genético , Proteínas del Choque Térmico HSP40/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunohistoquímica , Hibridación in Situ , Masculino , Repeticiones de Microsatélite , Microscopía Confocal , Persona de Mediana Edad , Linaje , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Pez Cebra , Colágeno Tipo XVII
8.
Adv Exp Med Biol ; 916: 199-218, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27165355

RESUMEN

Many solid tumors are known to metastasize through the lymphatic vasculature. This process is facilitated by the generation of new lymphatic vessels (tumor lymphangiogenesis) and also by the remodelling of existing lymphatics. Together these processes enable the spread of tumor cells to distant sites. Currently our understanding of tumor lymphangiogenesis has been informed from mouse tumor models and from studies of developmental lymphangiogenesis. Since the discovery of bona fide lymphatic vessels in zebrafish in 2006, zebrafish have become a well-established model of developmental lymphangiogenesis. The attributes that make zebrafish such an important model of blood vessel development-the ability to live image developing vessels, genetic tractability and the conserved nature of development-also make fish an attractive model of lymphatic vessel development. In particular, zebrafish have made important contributions to our understanding of the processes of lymphatic vessel sprouting from veins and the mechanisms by which lymphatic precursors remodel into mature vessels. To date, zebrafish have not been used to directly model tumor lymphangiogenesis. In this chapter we will summarise the contributions zebrafish have made to our understanding of lymphangiogenesis and investigate the possibilities of combining zebrafish transgenic cancer lines or tumor transplantation models with existing lymphatic reporter lines, which could provide valuable insights into the process of tumor-induced lymphangiogenesis. In addition the utility of using the zebrafish lymphatic model as a platform to screen and develop novel anti-lymphatic therapeutics will also be discussed.


Asunto(s)
Modelos Animales de Enfermedad , Vasos Linfáticos/patología , Neoplasias/patología , Animales , Neoplasias/genética , Pez Cebra
9.
Development ; 139(13): 2381-91, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22627281

RESUMEN

We have generated novel transgenic lines that brightly mark the lymphatic system of zebrafish using the lyve1 promoter. Facilitated by these new transgenic lines, we generated a map of zebrafish lymphatic development up to 15 days post-fertilisation and discovered three previously uncharacterised lymphatic vessel networks: the facial lymphatics, the lateral lymphatics and the intestinal lymphatics. We show that a facial lymphatic vessel, termed the lateral facial lymphatic, develops through a novel developmental mechanism, which initially involves vessel growth through a single vascular sprout followed by the recruitment of lymphangioblasts to the vascular tip. Unlike the lymphangioblasts that form the thoracic duct, the lymphangioblasts that contribute to the lateral facial lymphatic vessel originate from a number of different blood vessels. Our work highlights the additional complexity of lymphatic vessel development in the zebrafish that may increase its versatility as a model of lymphangiogenesis.


Asunto(s)
Linfangiogénesis , Sistema Linfático/crecimiento & desarrollo , Vasos Linfáticos/fisiología , Proteínas de Transporte Vesicular/biosíntesis , Proteínas de Pez Cebra/biosíntesis , Pez Cebra/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente , Regiones Promotoras Genéticas , Proteínas de Transporte Vesicular/genética , Proteínas de Pez Cebra/genética
10.
Cytometry A ; 87(3): 190-4, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25483307

RESUMEN

Small vertebrate model organisms have recently gained popularity as attractive experimental models that enhance our understanding of human tissue and organ development. Despite a large body of evidence using optical spectroscopy for the characterization of small model organism on chip-based devices, no attempts have been so far made to interface microfabricated technologies with environmental scanning electron microscopy (ESEM). Conventional scanning electron microscopy requires high vacuum environments and biological samples must be, therefore, submitted to many preparative procedures to dehydrate, fix, and subsequently stain the sample with gold-palladium deposition. This process is inherently low-throughput and can introduce many analytical artifacts. This work describes a proof-of-concept microfluidic chip-based system for immobilizing zebrafish larvae for ESEM imaging that is performed in a gaseous atmosphere, under low vacuum mode and without any need for sample staining protocols. The microfabricated technology provides a user-friendly and simple interface to perform ESEM imaging on zebrafish larvae. Presented lab-on-a-chip device was fabricated using a high-speed infrared laser micromachining in a biocompatible poly(methyl methacrylate) thermoplastic. It consisted of a reservoir with multiple semispherical microwells designed to hold the yolk of dechorionated zebrafish larvae. Immobilization of the larvae was achieved by a gentle suction generated during blotting of the medium. Trapping region allowed for multiple specimens to be conveniently positioned on the chip-based device within few minutes for ESEM imaging.


Asunto(s)
Células Inmovilizadas/ultraestructura , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/métodos , Pez Cebra , Animales , Larva , Microscopía Electrónica de Rastreo/métodos , Factores de Tiempo
11.
Blood ; 122(22): 3678-90, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23886837

RESUMEN

Establishment and stabilization of endothelial tubes with patent lumens is vital during vertebrate development. Ras-interacting protein 1 (RASIP1) has been described as an essential regulator of de novo lumenogenesis through modulation of endothelial cell (EC) adhesion to the extracellular matrix (ECM). Here, we show that in mouse and zebrafish embryos, Rasip1-deficient vessels transition from an angioblast cord to a hollow tube, permit circulation of primitive erythrocytes, but ultimately collapse, leading to hemorrhage and embryonic lethality. Knockdown of RASIP1 does not alter EC-ECM adhesion, but causes cell-cell detachment and increases permeability of EC monolayers in vitro. We also found that endogenous RASIP1 in ECs binds Ras-related protein 1 (RAP1), but not Ras homolog gene family member A or cell division control protein 42 homolog. Using an exchange protein directly activated by cyclic adenosine monophosphate 1 (EPAC1)-RAP1-dependent model of nascent junction formation, we demonstrate that a fraction of the RASIP1 protein pool localizes to cell-cell contacts. Loss of RASIP1 phenocopies loss of RAP1 or EPAC1 in ECs by altering junctional actin organization, localization of the actin-bundling protein nonmuscle myosin heavy chain IIB, and junction remodeling. Our data show that RASIP1 regulates the integrity of newly formed blood vessels as an effector of EPAC1-RAP1 signaling.


Asunto(s)
Proteínas Portadoras/fisiología , Endotelio Vascular/embriología , Endotelio Vascular/fisiología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Unión al GTP rap1/metabolismo , Actinas/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Uniones Intercelulares/fisiología , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Noqueados , Proteínas de Unión al GTP Monoméricas/metabolismo , Neovascularización Fisiológica , Embarazo , Interferencia de ARN , Transducción de Señal , Pez Cebra , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/fisiología
12.
Cytometry A ; 85(6): 537-47, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24664821

RESUMEN

Transgenic zebrafish (Danio rerio) models of human diseases have recently emerged as innovative experimental systems in drug discovery and molecular pathology. None of the currently available technologies, however, allow for automated immobilization and treatment of large numbers of spatially encoded transgenic embryos during real-time developmental analysis. This work describes the proof-of-concept design and validation of an integrated 3D microfluidic chip-based system fabricated directly in the poly(methyl methacrylate) transparent thermoplastic using infrared laser micromachining. At its core, the device utilizes an array of 3D micromechanical traps to actively capture and immobilize single embryos using a low-pressure suction. It also features built-in piezoelectric microdiaphragm pumps, embryo-trapping suction manifold, drug delivery manifold, and optically transparent indium tin oxide heating element to provide optimal temperature during embryo development. Furthermore, we present design of the proof-of-concept off-chip electronic interface equipped with robotic servo actuator driven stage, innovative servomotor-actuated pinch valves, and embedded miniaturized fluorescent USB microscope. Our results showed that the innovative device has 100% embryo-trapping efficiency while supporting normal embryo development for up to 72 hr in a confined microfluidic environment. We also showed data that this microfluidic system can be readily applied to kinetic analysis of a panel of investigational antiangiogenic agents in transgenic zebrafish lines. The optical transparency and embryo immobilization allow for convenient visualization of developing vasculature patterns in response to drug treatment without the need for specimen re-positioning. The integrated electronic interfaces bring the lab-on-a-chip systems a step closer to realization of complete analytical automation.


Asunto(s)
Ecotoxicología , Preparaciones Farmacéuticas/administración & dosificación , Pez Cebra , Animales , Animales Modificados Genéticamente , Descubrimiento de Drogas , Ecotoxicología/instrumentación , Ecotoxicología/métodos , Embrión no Mamífero/efectos de los fármacos , Humanos , Cinética , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos
13.
Cytometry A ; 85(11): 921-32, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25287981

RESUMEN

Biotests performed on small vertebrate model organisms provide significant investigative advantages as compared with bioassays that employ cell lines, isolated primary cells, or tissue samples. The main advantage offered by whole-organism approaches is that the effects under study occur in the context of intact physiological milieu, with all its intercellular and multisystem interactions. The gap between the high-throughput cell-based in vitro assays and low-throughput, disproportionally expensive and ethically controversial mammal in vivo tests can be closed by small model organisms such as zebrafish or Xenopus. The optical transparency of their tissues, the ease of genetic manipulation and straightforward husbandry, explain the growing popularity of these model organisms. Nevertheless, despite the potential for miniaturization, automation and subsequent increase in throughput of experimental setups, the manipulation, dispensing and analysis of living fish and frog embryos remain labor-intensive. Recently, a new generation of miniaturized chip-based devices have been developed for zebrafish and Xenopus embryo on-chip culture and experimentation. In this work, we review the critical developments in the field of Lab-on-a-Chip devices designed to alleviate the limits of traditional platforms for studies on zebrafish and clawed frog embryo and larvae. © 2014 International Society for Advancement of Cytometry.


Asunto(s)
Técnicas Analíticas Microfluídicas/métodos , Pez Cebra/embriología , Animales , Automatización de Laboratorios/métodos , Bioensayo/métodos , Técnicas de Cultivo de Embriones , Xenopus/embriología
14.
Sci Adv ; 9(36): eadf9904, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37672586

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) respond to infection by proliferating and generating in-demand neutrophils through a process called emergency granulopoiesis (EG). Recently, infection-induced changes in HSPCs have also been shown to underpin the longevity of trained immunity, where they generate innate immune cells with enhanced responses to subsequent microbial threats. Using larval zebrafish to live image neutrophils and HSPCs, we show that infection-experienced HSPCs generate neutrophils with enhanced bactericidal functions. Transcriptomic analysis of EG neutrophils uncovered a previously unknown function for mitochondrial reactive oxygen species in elevating neutrophil bactericidal activity. We also reveal that driving expression of zebrafish C/EBPß within infection-naïve HSPCs is sufficient to generate neutrophils with similarly enhanced bactericidal capacity. Our work suggests that this demand-adapted source of neutrophils contributes to trained immunity by providing enhanced protection toward subsequent infections. Manipulating demand-driven granulopoiesis may provide a therapeutic strategy to boost neutrophil function and treat infectious disease.


Asunto(s)
Infecciones Bacterianas , Células Madre Hematopoyéticas , Inmunidad Entrenada , Células Madre Hematopoyéticas/inmunología , Células Madre Hematopoyéticas/microbiología , Animales , Pez Cebra , Larva/inmunología , Larva/microbiología , Especies Reactivas de Oxígeno/metabolismo , Infecciones Bacterianas/inmunología
15.
Blood ; 116(6): 909-14, 2010 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-20453160

RESUMEN

Blood cells of an adult vertebrate are continuously generated by hematopoietic stem cells (HSCs) that originate during embryonic life within the aorta-gonad-mesonephros region. There is now compelling in vivo evidence that HSCs are generated from aortic endothelial cells and that this process is critically regulated by the transcription factor Runx1. By time-lapse microscopy of Runx1-enhanced green fluorescent protein transgenic zebrafish embryos, we were able to capture a subset of cells within the ventral endothelium of the dorsal aorta, as they acquire hemogenic properties and directly emerge as presumptive HSCs. These nascent hematopoietic cells assume a rounded morphology, transiently occupy the subaortic space, and eventually enter the circulation via the caudal vein. Cell tracing showed that these cells subsequently populated the sites of definitive hematopoiesis (thymus and kidney), consistent with an HSC identity. HSC numbers depended on activity of the transcription factor Runx1, on blood flow, and on proper development of the dorsal aorta (features in common with mammals). This study captures the earliest events of the transition of endothelial cells to a hemogenic endothelium and demonstrates that embryonic hematopoietic progenitors directly differentiate from endothelial cells within a living organism.


Asunto(s)
Aorta , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Células Endoteliales/fisiología , Células Madre Hematopoyéticas/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Aorta/citología , Aorta/embriología , Aorta/fisiología , Diferenciación Celular/fisiología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Células Endoteliales/citología , Factor de Crecimiento Epidérmico/genética , Factor de Crecimiento Epidérmico/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Riñón/citología , Riñón/embriología , Riñón/fisiología , Masculino , Flujo Sanguíneo Regional/fisiología , Timo/citología , Timo/embriología , Timo/fisiología , Activación Transcripcional/fisiología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
16.
Clin Sci (Lond) ; 122(10): 449-57, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22142330

RESUMEN

The flavone acetic acid derivative DMXAA [5,6-dimethylXAA (xanthenone-4-acetic acid), Vadimezan, ASA404] is a drug that displayed vascular-disrupting activity and induced haemorrhagic necrosis and tumour regression in pre-clinical animal models. Both immune-mediated and non-immune-mediated effects contributed to the tumour regression. The vascular disruption was less in human tumours, with immune-mediated effects being less prominent, but nonetheless DMXAA showed promising effects in Phase II clinical trials in non-small-cell lung cancer. However, these effects were not replicated in Phase III clinical trials. It has been difficult to understand the differences between the pre-clinical findings and the later clinical trials as the molecular targets for the agent have never been clearly established. To investigate the mechanism of action, we sought to determine whether DMXAA might target protein kinases. We found that, at concentrations achieved in blood during clinical trials, DMXAA has inhibitory effects against several kinases, with most potent effects being on members of the VEGFR (vascular endothelial growth factor receptor) tyrosine kinase family. Some analogues of DMXAA were even more effective inhibitors of these kinases, in particular 2-MeXAA (2-methylXAA) and 6-MeXAA (6-methylXAA). The inhibitory effects were greatest against VEGFR2 and, consistent with this, we found that DMXAA, 2-MeXAA and 6-MeXAA were able to block angiogenesis in zebrafish embryos and also inhibit VEGFR2 signalling in HUVECs (human umbilical vein endothelial cells). Taken together, these results indicate that at least part of the effects of DMXAA are due to it acting as a multi-kinase inhibitor and that the anti-VEGFR activity in particular may contribute to the non-immune-mediated effects of DMXAA on the vasculature.


Asunto(s)
Inhibidores de Proteínas Quinasas/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Xantonas/farmacología , Animales , Humanos , Modelos Moleculares , Neovascularización Fisiológica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/química , Xantonas/química , Pez Cebra/embriología
17.
Dev Dyn ; 240(1): 288-98, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21181946

RESUMEN

Inflammatory bowel disease (IBD) results from dysfunctional interactions between the intestinal immune system and microbiota, influenced by host genetic susceptibility. Because a key feature of the pathology is intestinal epithelial damage, potential disease factors have been traditionally analyzed within the background of chemical colitis models in mice. The zebrafish has greatly complemented the mouse for modeling aspects of disease processes, with an advantage for high content drug screens. Larval zebrafish exposed to the haptenizing agent trinitrobenzene sulfonic acid (TNBS) displayed impaired intestinal homeostasis and inflammation reminiscent of human IBD. There was a marked induction of pro-inflammatory cytokines, the degradative enzyme mmp9 and leukocytosis. Enterocolitis was dependent on microbiota and Toll-like receptor signaling, that can be ameliorated by antibiotic and anti-inflammatory drug treatments. This system will be useful to rapidly interrogate in vivo the biological significance of the IBD candidate genes so far identified and to carry out pharmacological modifier screens.


Asunto(s)
Antiinflamatorios/uso terapéutico , Modelos Animales de Enfermedad , Enterocolitis/microbiología , Enterocolitis/prevención & control , Tracto Gastrointestinal/microbiología , Metagenoma/fisiología , Pez Cebra , Animales , Antiinflamatorios/farmacología , Embrión no Mamífero , Enterocolitis/inducido químicamente , Enterocolitis/patología , Tracto Gastrointestinal/irrigación sanguínea , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/patología , Haptenos/inmunología , Haptenos/metabolismo , Humanos , Larva , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Leucocitos/patología , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/fisiología , Ácido Trinitrobencenosulfónico , Pez Cebra/embriología , Pez Cebra/crecimiento & desarrollo
18.
Genesis ; 49(12): 905-11, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21557452

RESUMEN

A number of heat shock proteins (HSPs), including Hsp70 and Hsp110, function as molecular chaperones within intestinal epithelial cells that line the mammalian digestive system. HSPs confer cellular protection against environmental stress induced by chemical toxins or pathogens. There is interest in how members of this protein family might influence the progression of inflammatory bowel disease. Using the zebrafish model system, we report the expression of the duplicated hspa4 genes within the intestinal epithelium. The hspa4 genes belong to the Hsp110 family. We show that under inflammatory stress conditions within the gut, expression of these genes is up-regulated in a similar manner to that previously observed for mammalian Hsp70. Because of the amenability of the zebrafish to whole-animal screening protocols, the hspa4 genes could be used as effective read-outs for genetic, chemical and environmental factors that might influence intestinal inflammation.


Asunto(s)
Proteínas del Choque Térmico HSP110/genética , Inflamación/genética , Regulación hacia Arriba , Proteínas de Pez Cebra/metabolismo , Pez Cebra/genética , Animales , Western Blotting , Proteínas del Choque Térmico HSP110/metabolismo , Mucosa Intestinal/metabolismo , Modelos Animales , Estrés Fisiológico , Transcripción Genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
19.
Dev Biol ; 344(2): 637-49, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20553708

RESUMEN

Contact between sister chromatids from S phase to anaphase depends on cohesin, a large multi-subunit protein complex. Mutations in sister chromatid cohesion proteins underlie the human developmental condition, Cornelia de Lange syndrome. Roles for cohesin in regulating gene expression, sometimes in combination with CCCTC-binding factor (CTCF), have emerged. We analyzed zebrafish embryos null for cohesin subunit rad21 using microarrays to determine global effects of cohesin on gene expression during embryogenesis. This identified Rad21-associated gene networks that included myca (zebrafish c-myc), p53 and mdm2. In zebrafish, cohesin binds to the transcription start sites of p53 and mdm2, and depletion of either Rad21 or CTCF increased their transcription. In contrast, myca expression was strongly downregulated upon loss of Rad21 while depletion of CTCF had little effect. Depletion of Rad21 or the cohesin-loading factor Nipped-B in Drosophila cells also reduced expression of myc and Myc target genes. Cohesin bound the transcription start site plus an upstream predicted CTCF binding site at zebrafish myca. Binding and positive regulation of the c-Myc gene by cohesin is conserved through evolution, indicating that this regulation is likely to be direct. The exact mechanism of regulation is unknown, but local changes in histone modification associated with transcription repression at the myca gene were observed in rad21 mutants.


Asunto(s)
Pez Cebra/metabolismo , Anafase , Animales , Factor de Unión a CCCTC , Proteínas de Ciclo Celular , Cromátides/metabolismo , Proteínas Cromosómicas no Histona , Segregación Cromosómica , Síndrome de Cornelia de Lange/genética , Drosophila/genética , Drosophila/metabolismo , Genes myc , Humanos , Proteínas Represoras , Fase S , Pez Cebra/genética , Cohesinas
20.
Blood ; 113(6): 1241-9, 2009 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-18927441

RESUMEN

The transcription factor Runx1 is essential for the development of definitive hematopoietic stem cells (HSCs) during vertebrate embryogenesis and is transcribed from 2 promoters, P1 and P2, generating 2 major Runx1 isoforms. We have created 2 stable runx1 promoter zebrafish-transgenic lines that provide insight into the roles of the P1 and P2 isoforms during the establishment of definitive hematopoiesis. The Tg(runx1P1:EGFP) line displays fluorescence in the posterior blood island, where definitive erythromyeloid progenitors develop. The Tg(runx1P2:EGFP) line marks definitive HSCs in the aorta-gonad-mesonephros, with enhanced green fluorescent protein-labeled cells later populating the pronephros and thymus. This suggests that a function of runx1 promoter switching is associated with the establishment of discrete definitive blood progenitor compartments. These runx1 promoter-transgenic lines are novel tools for the study of Runx1 regulation and function in normal and malignant hematopoiesis. The ability to visualize and isolate fluorescently labeled HSCs should contribute to further elucidating the complex regulation of HSC development.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/fisiología , Células Precursoras Eritroides/citología , Proteínas Fluorescentes Verdes/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas de Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Southern Blotting , Linaje de la Célula , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Hematopoyesis , Técnicas para Inmunoenzimas , Hibridación in Situ , Mesonefro/citología , Mesonefro/embriología , Isoformas de Proteínas , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA