Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(31): e2306046120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37487099

RESUMEN

The electron-conducting circuitry of life represents an as-yet untapped resource of exquisite, nanoscale biomolecular engineering. Here, we report the characterization and structure of a de novo diheme "maquette" protein, 4D2, which we subsequently use to create an expanded, modular platform for heme protein design. A well-folded monoheme variant was created by computational redesign, which was then utilized for the experimental validation of continuum electrostatic redox potential calculations. This demonstrates how fundamental biophysical properties can be predicted and fine-tuned. 4D2 was then extended into a tetraheme helical bundle, representing a 7 nm molecular wire. Despite a molecular weight of only 24 kDa, electron cryomicroscopy illustrated a remarkable level of detail, indicating the positioning of the secondary structure and the heme cofactors. This robust, expressible, highly thermostable and readily designable modular platform presents a valuable resource for redox protein design and the future construction of artificial electron-conducting circuitry.


Asunto(s)
Hemoproteínas , Biofisica , Microscopía por Crioelectrón , Electrones , Oxidación-Reducción
2.
Angew Chem Int Ed Engl ; 62(3): e202213053, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36314667

RESUMEN

Abyssomicin C and its atropisomer are potent inhibitors of bacterial folate metabolism. They possess complex polycyclic structures, and their biosynthesis has been shown to involve several unusual enzymatic transformations. Using a combination of synthesis and in vitro assays we reveal that AbyV, a cytochrome P450 enzyme from the aby gene cluster, catalyses a key late-stage epoxidation required for the installation of the characteristic ether-bridged core of abyssomicin C. The X-ray crystal structure of AbyV has been determined, which in combination with molecular dynamics simulations provides a structural framework for our functional data. This work demonstrates the power of combining selective carbon-13 labelling with NMR spectroscopy as a sensitive tool to interrogate enzyme-catalysed reactions in vitro with no need for purification.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Sistema Enzimático del Citocromo P-450 , Sistema Enzimático del Citocromo P-450/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Simulación de Dinámica Molecular , Metabolismo Secundario
3.
Angew Chem Int Ed Engl ; 62(34): e202304476, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37218580

RESUMEN

Bacterial trans-acyltransferase polyketide synthases (trans-AT PKSs) are modular megaenzymes that employ unusual catalytic domains to assemble diverse bioactive natural products. One such PKS is responsible for the biosynthesis of the oximidine anticancer agents, oxime-substituted benzolactone enamides that inhibit vacuolar H+ -ATPases. Here, we describe the identification of the oximidine gene cluster in Pseudomonas baetica and the characterization of four novel oximidine variants, including a structurally simpler intermediate that retains potent anticancer activity. Using a combination of in vivo, in vitro and computational approaches, we experimentally elucidate the oximidine biosynthetic pathway and reveal an unprecedented mechanism for O-methyloxime formation. We show that this process involves a specialized monooxygenase and methyltransferase domain and provide insight into their activity, mechanism and specificity. Our findings expand the catalytic capabilities of trans-AT PKSs and identify potential strategies for the production of novel oximidine analogues.


Asunto(s)
Antineoplásicos , Policétidos , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Bacterias , Metabolismo Secundario , Policétidos/metabolismo
4.
Angew Chem Int Ed Engl ; 62(47): e202312514, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37768840

RESUMEN

Mupirocin is a clinically important antibiotic produced by a trans-AT Type I polyketide synthase (PKS) in Pseudomonas fluorescens. The major bioactive metabolite, pseudomonic acid A (PA-A), is assembled on a tetrasubstituted tetrahydropyran (THP) core incorporating a 6-hydroxy group proposed to be introduced by α-hydroxylation of the thioester of the acyl carrier protein (ACP) bound polyketide chain. Herein, we describe an in vitro approach combining purified enzyme components, chemical synthesis, isotopic labelling, mass spectrometry and NMR in conjunction with in vivo studies leading to the first characterisation of the α-hydroxylation bimodule of the mupirocin biosynthetic pathway. These studies reveal the precise timing of hydroxylation by MupA, substrate specificity and the ACP dependency of the enzyme components that comprise this α-hydroxylation bimodule. Furthermore, using purified enzyme, it is shown that the MmpA KS0 shows relaxed substrate specificity, suggesting precise spatiotemporal control of in trans MupA recruitment in the context of the PKS. Finally, the detection of multiple intermodular MupA/ACP interactions suggests these bimodules may integrate MupA into their assembly.


Asunto(s)
Mupirocina , Sintasas Poliquetidas , Sintasas Poliquetidas/metabolismo , Hidroxilación , Antibacterianos/química
5.
J Biol Chem ; 297(6): 101392, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34758357

RESUMEN

The α1-acid glycoprotein (AGP) is an abundant blood plasma protein with important immunomodulatory functions coupled to endogenous and exogenous ligand-binding properties. Its affinity for many drug-like structures, however, means AGP can have a significant effect on the pharmokinetics and pharmacodynamics of numerous small molecule therapeutics. Staurosporine, and its hydroxylated forms UCN-01 and UCN-02, are kinase inhibitors that have been investigated at length as antitumour compounds. Despite their potency, these compounds display poor pharmokinetics due to binding to both AGP variants, AGP1 and AGP2. The recent renewed interest in UCN-01 as a cytostatic protective agent prompted us to solve the structure of the AGP2-UCN-01 complex by X-ray crystallography, revealing for the first time the precise binding mode of UCN-01. The solution NMR suggests AGP2 undergoes a significant conformational change upon ligand binding, but also that it uses a common set of sidechains with which it captures key groups of UCN-01 and other small molecule ligands. We anticipate that this structure and the supporting NMR data will facilitate rational redesign of small molecules that could evade AGP and therefore improve tissue distribution.


Asunto(s)
Antineoplásicos/química , Orosomucoide/química , Estaurosporina/análogos & derivados , Cristalografía por Rayos X , Humanos , Unión Proteica , Dominios Proteicos , Estaurosporina/química
6.
Org Biomol Chem ; 20(6): 1150-1175, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35029626

RESUMEN

Tetrahydropyrans (THPs) are common structural motifs found in natural products and synthetic therapeutic molecules. In Nature these 6-membered oxygen heterocycles are often assembled via intramolecular reactions involving either oxy-Michael additions or ring opening of epoxy-alcohols. Indeed, the polyether natural products have been particularly widely studied due to their fascinating structures and important biological properties; these are commonly formed via endo-selective epoxide-opening cascades. In this review we outline synthetic approaches for endo-selective intramolecular epoxide ring opening (IERO) of 4,5-epoxy-alcohols and their applications in natural product synthesis. In addition, the biosynthesis of THP-containing natural products which utilise IERO reactions are reviewed.


Asunto(s)
Alcoholes
7.
Angew Chem Int Ed Engl ; 61(50): e202212393, 2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36227272

RESUMEN

Mupirocin is a clinically important antibiotic produced by Pseudomonas fluorescens NCIMB 10586 that is assembled by a complex trans-AT polyketide synthase. The polyketide fragment, monic acid, is esterified by a 9-hydroxynonanoic acid (9HN) side chain which is essential for biological activity. The ester side chain assembly is initialised from a 3-hydroxypropionate (3HP) starter unit attached to the acyl carrier protein (ACP) MacpD, but the fate of this species is unknown. Herein we report the application of NMR spectroscopy, mass spectrometry, chemical probes and in vitro assays to establish the remaining steps of 9HN biosynthesis. These investigations reveal a complex interplay between a novel iterative or "stuttering" KS-AT didomain (MmpF), the multidomain module MmpB and multiple ACPs. This work has important implications for understanding the late-stage biosynthetic steps of mupirocin and will be important for future engineering of related trans-AT biosynthetic pathways (e.g. thiomarinol).


Asunto(s)
Antibacterianos , Mupirocina , Antibacterianos/química , Proteína Transportadora de Acilo/metabolismo , Sintasas Poliquetidas/metabolismo
8.
Biochemistry ; 60(3): 219-230, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33416314

RESUMEN

The acyl carrier protein (ACP) is an indispensable component of both fatty acid and polyketide synthases and is primarily responsible for delivering acyl intermediates to enzymatic partners. At present, increasing numbers of multidomain ACPs have been discovered with roles in molecular recognition of trans-acting enzymatic partners as well as increasing metabolic flux. Further structural information is required to provide insight into their function, yet to date, the only high-resolution structure of this class to be determined is that of the doublet ACP (two continuous ACP domains) from mupirocin synthase. Here we report the solution nuclear magnetic resonance (NMR) structure of the doublet ACP domains from PigH (PigH ACP1-ACP2), which is an enzyme that catalyzes the formation of the bipyrrolic intermediate of prodigiosin, a potent anticancer compound with a variety of biological activities. The PigH ACP1-ACP2 structure shows each ACP domain consists of three conserved helices connected by a linker that is partially restricted by interactions with the ACP1 domain. Analysis of the holo (4'-phosphopantetheine, 4'-PP) form of PigH ACP1-ACP2 by NMR revealed conformational exchange found predominantly in the ACP2 domain reflecting the inherent plasticity of this ACP. Furthermore, ensemble models obtained from SAXS data reveal two distinct conformers, bent and extended, of both apo (unmodified) and holo PigH ACP1-ACP2 mediated by the central linker. The bent conformer appears to be a result of linker-ACP1 interactions detected by NMR and might be important for intradomain communication during the biosynthesis. These results provide new insights into the behavior of the interdomain linker of multiple ACP domains that may modulate protein-protein interactions. This is likely to become an increasingly important consideration for metabolic engineering in prodigiosin and other related biosynthetic pathways.


Asunto(s)
Proteína Transportadora de Acilo/química , Proteínas Bacterianas/química , Modelos Moleculares , Simulación de Dinámica Molecular , Serratia/química , Proteína Transportadora de Acilo/metabolismo , Proteínas Bacterianas/metabolismo , Resonancia Magnética Nuclear Biomolecular , Prodigiosina/biosíntesis , Prodigiosina/química , Dominios Proteicos , Serratia/metabolismo
9.
J Biol Chem ; 295(19): 6689-6699, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32229583

RESUMEN

The cell surfaces of many bacteria carry filamentous polypeptides termed adhesins that enable binding to both biotic and abiotic surfaces. Surface adherence is facilitated by the exquisite selectivity of the adhesins for their cognate ligands or receptors and is a key step in niche or host colonization and pathogenicity. Streptococcus gordonii is a primary colonizer of the human oral cavity and an opportunistic pathogen, as well as a leading cause of infective endocarditis in humans. The fibrillar adhesin CshA is an important determinant of S. gordonii adherence, forming peritrichous fibrils on its surface that bind host cells and other microorganisms. CshA possesses a distinctive multidomain architecture comprising an N-terminal target-binding region fused to 17 repeat domains (RDs) that are each ∼100 amino acids long. Here, using structural and biophysical methods, we demonstrate that the intact CshA repeat region (CshA_RD1-17, domains 1-17) forms an extended polymeric monomer in solution. We recombinantly produced a subset of CshA RDs and found that they differ in stability and unfolding behavior. The NMR structure of CshA_RD13 revealed a hitherto unreported all ß-fold, flanked by disordered interdomain linkers. These findings, in tandem with complementary hydrodynamic studies of CshA_RD1-17, indicate that this polypeptide possesses a highly unusual dynamic transitory structure characterized by alternating regions of order and disorder. This architecture provides flexibility for the adhesive tip of the CshA fibril to maintain bacterial attachment that withstands shear forces within the human host. It may also help mitigate deleterious folding events between neighboring RDs that share significant structural identity without compromising mechanical stability.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de la Membrana/química , Multimerización de Proteína , Secuencia de Aminoácidos , Modelos Moleculares , Dominios Proteicos , Estructura Cuaternaria de Proteína , Secuencias Repetitivas de Aminoácido
10.
Org Biomol Chem ; 19(28): 6210-6215, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34190301

RESUMEN

The ambruticins are a family of polyketide natural products which exhibit potent antifungal activity. Gene knockout experiments are in accord with the proposal that the tetrahydropyran ring of the ambruticins is formed via the AmbJ catalysed epoxidation of the unsaturated 3,5-dihydroxy acid, ambruticin J, followed by regioselective cyclisation to ambruticin F. Herein, a convergent approach to the total synthesis of ambruticin J is described as well as model studies involving epoxidation and cyclisations of unsaturated hydroxy esters to give tetrahydropyrans and tetrahydrofurans. The total synthesis involves preparation of three key fragments which were united via a Suzuki-Miyaura cross-coupling and Julia-Kocienski olefination to generate the required carbon framework. Global deprotection to a triol and selective oxidation of the primary alcohol gave, after hydrolysis of the lactone, ambruticin J.

11.
Angew Chem Int Ed Engl ; 59(26): 10549-10556, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32208550

RESUMEN

The enoyl-acyl carrier protein reductase enzyme FabI is essential for fatty acid biosynthesis in Staphylococcus aureus and represents a promising target for the development of novel, urgently needed anti-staphylococcal agents. Here, we elucidate the mode of action of the kalimantacin antibiotics, a novel class of FabI inhibitors with clinically-relevant activity against multidrug-resistant S. aureus. By combining X-ray crystallography with molecular dynamics simulations, in vitro kinetic studies and chemical derivatization experiments, we characterize the interaction between the antibiotics and their target, and we demonstrate that the kalimantacins bind in a unique conformation that differs significantly from the binding mode of other known FabI inhibitors. We also investigate mechanisms of acquired resistance in S. aureus and identify key residues in FabI that stabilize the binding of the antibiotics. Our findings provide intriguing insights into the mode of action of a novel class of FabI inhibitors that will inspire future anti-staphylococcal drug development.


Asunto(s)
Antibacterianos/metabolismo , Enoil-ACP Reductasa (NADPH Específica B)/metabolismo , Inhibidores Enzimáticos/metabolismo , Staphylococcus aureus/enzimología , Antibacterianos/farmacología , Sitios de Unión/efectos de los fármacos , Carbamatos/metabolismo , Carbamatos/farmacología , Cristalografía por Rayos X , Enoil-ACP Reductasa (NADPH Específica B)/antagonistas & inhibidores , Enoil-ACP Reductasa (NADPH Específica B)/genética , Inhibidores Enzimáticos/farmacología , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos Insaturados/farmacología , Pruebas de Sensibilidad Microbiana , Simulación de Dinámica Molecular , Mutación Puntual , Unión Proteica , Staphylococcus aureus/efectos de los fármacos
12.
Biochemistry ; 58(28): 3060-3064, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31251570

RESUMEN

Miniproteins reduce the complexity of the protein-folding problem allowing systematic studies of contributions to protein folding and stabilization. Here, we describe the rational redesign of a miniprotein, PPα, comprising a polyproline II helix, a loop, and an α helix. The redesign provides a de novo framework for interrogating noncovalent interactions. Optimized PPα has significantly improved thermal stability with a midpoint unfolding temperature (TM) of 51 °C. Its nuclear magnetic resonance structure indicates a density of stabilizing noncovalent interactions that is higher than that of the parent peptide, specifically an increased number of CH-π interactions. In part, we attribute this to improved long-range electrostatic interactions between the two helical elements. We probe further sequence-stability relationships in the miniprotein through a series of rational mutations.


Asunto(s)
Péptidos/química , Péptidos/genética , Secuencia de Aminoácidos , Conformación Proteica , Pliegue de Proteína , Estabilidad Proteica , Estructura Secundaria de Proteína
13.
J Biol Chem ; 293(50): 19429-19440, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30337369

RESUMEN

Toxin-antitoxin (TA) systems are present in many bacteria and play important roles in bacterial growth, physiology, and pathogenicity. Those that are best studied are the type II TA systems, in which both toxins and antitoxins are proteins. The HicAB system is one of the prototypic TA systems, found in many bacterial species. Complex interactions between the protein toxin (HicA), the protein antitoxin (HicB), and the DNA upstream of the encoding genes regulate the activity of this system, but few structural details are available about how HicA destabilizes the HicB-DNA complex. Here, we determined the X-ray structures of HicB and the HicAB complex to 1.8 and 2.5 Å resolution, respectively, and characterized their DNA interactions. This revealed that HicB forms a tetramer and HicA and HicB form a heterooctameric complex that involves structural reorganization of the C-terminal (DNA-binding) region of HicB. Our observations indicated that HicA has a profound impact on binding of HicB to DNA sequences upstream of hicAB in a stoichiometric-dependent way. At low ratios of HicA:HicB, there was no effect on DNA binding, but at higher ratios, the affinity for DNA declined cooperatively, driving dissociation of the HicA:HicB:DNA complex. These results reveal the structural mechanisms by which HicA de-represses the HicB-DNA complex.


Asunto(s)
Antitoxinas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , ADN/metabolismo , Toxinas Biológicas/química , Toxinas Biológicas/metabolismo , Antitoxinas/química , Proteínas Bacterianas/genética , Burkholderia pseudomallei , Modelos Moleculares , Operón/genética , Unión Proteica , Conformación Proteica , Toxinas Biológicas/genética
14.
Nat Chem Biol ; 13(7): 764-770, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28530710

RESUMEN

Miniproteins simplify the protein-folding problem, allowing the dissection of forces that stabilize protein structures. Here we describe PPα-Tyr, a designed peptide comprising an α-helix buttressed by a polyproline II helix. PPα-Tyr is water soluble and monomeric, and it unfolds cooperatively with a midpoint unfolding temperature (TM) of 39 °C. NMR structures of PPα-Tyr reveal proline residues docked between tyrosine side chains, as designed. The stability of PPα is sensitive to modifications in the aromatic residues: replacing tyrosine with phenylalanine, i.e., changing three solvent-exposed hydroxyl groups to protons, reduces the TM to 20 °C. We attribute this result to the loss of CH-π interactions between the aromatic and proline rings, which we probe by substituting the aromatic residues with nonproteinogenic side chains. In analyses of natural protein structures, we find a preference for proline-tyrosine interactions over other proline-containing pairs, and observe abundant CH-π interactions in biologically important complexes between proline-rich ligands and SH3 and similar domains.


Asunto(s)
Péptidos/química , Péptidos/síntesis química , Ingeniería de Proteínas , Pliegue de Proteína , Estabilidad Proteica , Temperatura
15.
Proc Natl Acad Sci U S A ; 113(20): E2766-75, 2016 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-27140600

RESUMEN

Among the 15 extracellular domains of the mannose 6-phosphate/insulin-like growth factor-2 receptor (M6P/IGF2R), domain 11 has evolved a binding site for IGF2 to negatively regulate ligand bioavailability and mammalian growth. Despite the highly evolved structural loops of the IGF2:domain 11 binding site, affinity-enhancing AB loop mutations suggest that binding is modifiable. Here we examine the extent to which IGF2:domain 11 affinity, and its specificity over IGF1, can be enhanced, and we examine the structural basis of the mechanistic and functional consequences. Domain 11 binding loop mutants were selected by yeast surface display combined with high-resolution structure-based predictions, and validated by surface plasmon resonance. We discovered previously unidentified mutations in the ligand-interacting surface binding loops (AB, CD, FG, and HI). Five combined mutations increased rigidity of the AB loop, as confirmed by NMR. When added to three independently identified CD and FG loop mutations that reduced the koff value by twofold, these mutations resulted in an overall selective 100-fold improvement in affinity. The structural basis of the evolved affinity was improved shape complementarity established by interloop (AB-CD) and intraloop (FG-FG) side chain interactions. The high affinity of the combinatorial domain 11 Fc fusion proteins functioned as ligand-soluble antagonists or traps that depleted pathological IGF2 isoforms from serum and abrogated IGF2-dependent signaling in vivo. An evolved and reengineered high-specificity M6P/IGF2R domain 11 binding site for IGF2 may improve therapeutic targeting of the frequent IGF2 gain of function observed in human cancer.


Asunto(s)
Factor II del Crecimiento Similar a la Insulina/metabolismo , Receptor IGF Tipo 2/metabolismo , Adulto , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Línea Celular Tumoral , Cristalografía por Rayos X , Evolución Molecular Dirigida , Humanos , Factor II del Crecimiento Similar a la Insulina/química , Factor II del Crecimiento Similar a la Insulina/genética , Modelos Moleculares , Pichia , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Receptor IGF Tipo 2/antagonistas & inhibidores , Receptor IGF Tipo 2/química , Receptor IGF Tipo 2/genética
16.
Angew Chem Int Ed Engl ; 58(28): 9399-9403, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31095849

RESUMEN

The widely expressed G-protein coupled receptors (GPCRs) are versatile signal transducer proteins that are attractive drug targets but structurally challenging to study. GPCRs undergo a number of conformational rearrangements when transitioning from the inactive to the active state but have so far been believed to adopt a fairly conserved inactive conformation. Using 19 F NMR spectroscopy and advanced molecular dynamics simulations we describe a novel inactive state of the adenosine 2A receptor which is stabilised by the aminotriazole antagonist Cmpd-1. We demonstrate that the ligand stabilises a unique conformation of helix V and present data on the putative binding mode of the compound involving contacts to the transmembrane bundle as well as the extracellular loop 2.


Asunto(s)
Amitrol (Herbicida)/antagonistas & inhibidores , Compuestos de Bifenilo/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Simulación de Dinámica Molecular/normas , Receptor de Adenosina A2A/química , Humanos
17.
Angew Chem Int Ed Engl ; 58(36): 12446-12450, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31294525

RESUMEN

The presence of ß-branches in the structure of polyketides that possess potent biological activity underpins the widespread importance of this structural feature. Kalimantacin is a polyketide antibiotic with selective activity against staphylococci, and its biosynthesis involves the unprecedented incorporation of three different and sequential ß-branching modifications. We use purified single and multi-domain enzyme components of the kalimantacin biosynthetic machinery to address in vitro how the pattern of ß-branching in kalimantacin is controlled. Robust discrimination of enzyme products required the development of a generalisable assay that takes advantage of 13 C NMR of a single 13 C label incorporated into key biosynthetic mimics combined with favourable dynamic properties of an acyl carrier protein. We report a previously unassigned modular enoyl-CoA hydratase (mECH) domain and the assembly of enzyme constructs and cascades that are able to generate each specific ß-branch.


Asunto(s)
Radioisótopos de Carbono/análisis , Enoil-CoA Hidratasa/química , Enoil-CoA Hidratasa/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Carbamatos/química , Carbamatos/metabolismo , Ácidos Grasos Insaturados/química , Ácidos Grasos Insaturados/metabolismo , Modelos Moleculares , Especificidad por Sustrato
18.
J Am Chem Soc ; 140(15): 4961-4964, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29620883

RESUMEN

Polyketides are a large class of bioactive natural products with a wide range of structures and functions. Polyketides are biosynthesized by large, multidomain enzyme complexes termed polyketide synthases (PKSs). One of the primary challenges when studying PKSs is the high reactivity of their poly-ß-ketone substrates. This has hampered structural and mechanistic characterization of PKS-polyketide complexes, and, as a result, little is known about how PKSs position the unstable substrates for proper catalysis while displaying high levels of regio- and stereospecificity. As a first step toward a general plan to use oxetanes as carbonyl isosteres to broadly interrogate PKS chemistry, we describe the development and application of an oxetane-based PKS substrate mimic. This enabled the first structural determination of the acyl-enzyme intermediate of a ketosynthase (KS) in complex with an inert extender unit mimic. The crystal structure, in combination with molecular dynamics simulations, led to a proposed mechanism for the unique activity of DpsC, the priming ketosynthase for daunorubicin biosynthesis. The successful application of an oxetane-based polyketide mimic suggests that this novel class of probes could have wide-ranging applications to the greater biosynthetic community interested in the mechanistic enzymology of iterative PKSs.


Asunto(s)
Éteres Cíclicos/química , Sondas Moleculares/química , Sintasas Poliquetidas/química , Policétidos/química , Sitios de Unión , Éteres Cíclicos/metabolismo , Sondas Moleculares/metabolismo , Estructura Molecular , Sintasas Poliquetidas/metabolismo , Policétidos/metabolismo , Especificidad por Sustrato
19.
Anal Chem ; 90(18): 11025-11032, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30118604

RESUMEN

Preparative capillary gas chromatography (pcGC) is widely used for the isolation of single compounds for radiocarbon determinations. While being effective at isolating compounds, there are still genuine concerns relating to contamination associated with the isolation procedure, such as incomplete removal of solvent used to recover isolated compounds from the traps and cross-contamination, which can lead to erroneous 14C determinations. Herein we describe new approaches to identifying and removing these two sources of contamination. First, we replaced the common "U" trap design, which requires recovery of compounds using organic solvent, with a novel solventless trapping system (STS), consisting of a simple glass tube containing a glass wool plug, allowing condensation of a target compound in the wool and its solventless recovery by pushing the glass wool directly into a foil capsule for graphitization. With the STS trap, an average of 95.7% of the target compound was recovered, and contamination from column bleed was reduced. In addition, comparison of 14C determinations of fatty acid methyl ester (FAME) standards determined offline to those isolated by pcGC in STS traps showed excellent reproducibility and accuracy compared to those isolated using the commercial "U" traps. Second, "coldspots" were identified in the instrument, i.e., the termini of capillaries in the preparative unit, which can be cleaned of compounds condensed from earlier runs using a heat gun. Our new procedure, incorporating these two modifications, was tested on archeological fat hoards, producing 14C dates on isolated C16:0 and C18:0 fatty acids statistically consistent with the bulk dates of the archeological material.

20.
J Biol Chem ; 291(40): 21234-21245, 2016 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-27510031

RESUMEN

Insulin and insulin-like growth factors I and II are closely related protein hormones. Their distinct evolution has resulted in different yet overlapping biological functions with insulin becoming a key regulator of metabolism, whereas insulin-like growth factors (IGF)-I/II are major growth factors. Insulin and IGFs cross-bind with different affinities to closely related insulin receptor isoforms A and B (IR-A and IR-B) and insulin-like growth factor type I receptor (IGF-1R). Identification of structural determinants in IGFs and insulin that trigger their specific signaling pathways is of increasing importance in designing receptor-specific analogs with potential therapeutic applications. Here, we developed a straightforward protocol for production of recombinant IGF-II and prepared six IGF-II analogs with IGF-I-like mutations. All modified molecules exhibit significantly reduced affinity toward IR-A, particularly the analogs with a Pro-Gln insertion in the C-domain. Moreover, one of the analogs has enhanced binding affinity for IGF-1R due to a synergistic effect of the Pro-Gln insertion and S29N point mutation. Consequently, this analog has almost a 10-fold higher IGF-1R/IR-A binding specificity in comparison with native IGF-II. The established IGF-II purification protocol allowed for cost-effective isotope labeling required for a detailed NMR structural characterization of IGF-II analogs that revealed a link between the altered binding behavior of selected analogs and conformational rearrangement of their C-domains.


Asunto(s)
Antígenos CD/química , Factor II del Crecimiento Similar a la Insulina/química , Receptor IGF Tipo 1/química , Receptor de Insulina/química , Sustitución de Aminoácidos , Antígenos CD/genética , Antígenos CD/metabolismo , Humanos , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , Mutación Missense , Dominios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA