Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Plant J ; 103(4): 1304-1317, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32392366

RESUMEN

In self-incompatible Solanaceae, the pistil protein S-RNase contributes to S-specific pollen rejection in conspecific crosses, as well as to rejecting pollen from foreign species or whole clades. However, S-RNase alone is not sufficient for either type of pollen rejection. We describe a thioredoxin (Trx) type h from Nicotiana alata, NaTrxh, which interacts with and reduces S-RNase in vitro. Here, we show that expressing a redox-inactive mutant, NaTrxhSS , suppresses both S-specific pollen rejection and rejection of pollen from Nicotiana plumbaginifolia. Biochemical experiments provide evidence that NaTrxh specifically reduces the Cys155 -Cys185 disulphide bond of SC10 -Rnase, resulting in a significant increase of its ribonuclease activity. This reduction and increase in S-RNase activity by NaTrxh helps to explain why S-RNase alone could be insufficient for pollen rejection.


Asunto(s)
Nicotiana/metabolismo , Nicotiana/fisiología , Proteínas de Plantas/metabolismo , Polen/metabolismo , Polen/fisiología , Ribonucleasas/metabolismo , Flores/genética , Flores/metabolismo , Flores/fisiología , Proteínas de Plantas/genética , Polen/genética , Ribonucleasas/genética , Nicotiana/genética
2.
Molecules ; 26(17)2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34500798

RESUMEN

The marine-facultative Aspergillus sp. MEXU 27854, isolated from the Caleta Bay in Acapulco, Guerrero, Mexico, has provided an interesting diversity of secondary metabolites, including a series of rare dioxomorpholines, peptides, and butyrolactones. Here, we report on the genomic data, which consists of 11 contigs (N50~3.95 Mb) with a ~30.75 Mb total length of assembly. Genome annotation resulted in the prediction of 10,822 putative genes. Functional annotation was accomplished by BLAST searching protein sequences with different public databases. Of the predicted genes, 75% were assigned gene ontology terms. From the 67 BGCs identified, ~60% belong to the NRPS and NRPS-like classes. Putative BGCs for the dioxomorpholines and other metabolites were predicted by extensive genome mining. In addition, metabolomic molecular networking analysis allowed the annotation of all isolated compounds and revealed the biosynthetic potential of this fungus. This work represents the first report of whole-genome sequencing and annotation from a marine-facultative fungal strain isolated from Mexico.


Asunto(s)
Aspergillus/metabolismo , Metabolómica , Morfolinas/metabolismo , Péptidos Cíclicos/metabolismo , Aspergillus/genética , Aspergillus/aislamiento & purificación , México , Estructura Molecular , Morfolinas/química , Péptidos Cíclicos/química , Péptidos Cíclicos/genética
3.
J Struct Biol ; 212(1): 107578, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32682729

RESUMEN

Thioredoxins are regulatory proteins that reduce disulfide bonds on target proteins. NaTrxh, which belongs to the plant thioredoxin family h subgroup 2, interacts and reduces the S-RNase enhancing its ribonuclease activity seven-fold, resulting an essential protein for pollen rejection inNicotiana.Here, the crystal structure of NaTrxh at 1.7 Å by X-ray diffraction is reported. NaTrxh conserves the typical fold observed in other thioredoxins from prokaryotes and eukaryotes, but it contains extensions towards both N- and C-termini.The NaTrxh N-terminal extension participates in the reduction of S-RNase, and in the structure reported here, this is orientated towards the reactive site. The interaction between SF11-RNase and the NaTrxh N-terminal was simulated and the short-lived complex observed lasted for a tenth of ns. Moreover, we identified certain amino acids as SF11-RNase-E155 and NaTrxh-M104 as good candidates to contribute to the stability of the complex. Furthermore, we simulated the reduction of the C153-C186 SF11-RNase disulfide bond and observed subtle changes that affect the entire core, which might explain the increase in the ribonuclease activity of S-RNase when it is reduced by NaTrxh.


Asunto(s)
Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Ribonucleasas/metabolismo , Sitios de Unión/fisiología , Eucariontes/metabolismo , Células Procariotas/metabolismo , Transporte de Proteínas/fisiología
4.
Plant Physiol ; 175(3): 1105-1120, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28874520

RESUMEN

In Solanaceae, the S-specific interaction between the pistil S-RNase and the pollen S-Locus F-box protein controls self-incompatibility (SI). Although this interaction defines the specificity of the pollen rejection response, the identification of three pistil essential modifier genes unlinked to the S-locus (HT-B, 120K, and NaStEP) unveils a higher degree of complexity in the pollen rejection pathway. We showed previously that NaStEP, a stigma protein with homology with Kunitz-type protease inhibitors, is essential to SI in Nicotiana spp. During pollination, NaStEP is taken up by pollen tubes, where potential interactions with pollen tube proteins might underlie its function. Here, we identified NaSIPP, a mitochondrial protein with phosphate transporter activity, as a novel NaStEP-interacting protein. Coexpression of NaStEP and NaSIPP in pollen tubes showed interaction in the mitochondria, although when expressed alone, NaStEP remains mostly cytosolic, implicating NaSIPP-mediated translocation of NaStEP into the organelle. The NaSIPP transcript is detected specifically in mature pollen of Nicotiana spp.; however, in self-compatible plants, this gene has accumulated mutations, so its coding region is unlikely to produce a functional protein. RNA interference suppression of NaSIPP in Nicotiana spp. pollen grains disrupts the SI by preventing pollen tube inhibition. Taken together, our results are consistent with a model whereby the NaStEP and NaSIPP interaction, in incompatible pollen tubes, might destabilize the mitochondria and contribute to arrest pollen tube growth.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Nicotiana/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Plantas/metabolismo , Autoincompatibilidad en las Plantas con Flores , Regulación de la Expresión Génica de las Plantas , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Modelos Moleculares , Mutación/genética , Proteínas de Transporte de Fosfato/química , Células Vegetales/metabolismo , Proteínas de Plantas/química , Tubo Polínico/metabolismo , Unión Proteica , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Fracciones Subcelulares/metabolismo , Nicotiana/genética
5.
BMC Plant Biol ; 14: 147, 2014 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-24886483

RESUMEN

BACKGROUND: NaTrxh, a thioredoxin type h, shows differential expression between self-incompatible and self-compatible Nicotiana species. NaTrxh interacts in vitro with S-RNase and co-localizes with it in the extracellular matrix of the stylar transmitting tissue. NaTrxh contains N- and C-terminal extensions, a feature shared by thioredoxin h proteins of subgroup 2. To ascertain the function of these extensions in NaTrxh secretion and protein-protein interaction, we performed a deletion analysis on NaTrxh and fused the resulting variants to GFP. RESULTS: We found an internal domain in the N-terminal extension, called Nß, that is essential for NaTrxh secretion but is not hydrophobic, a canonical feature of a signal peptide. The lack of hydrophobicity as well as the location of the secretion signal within the NaTrxh primary structure, suggest an unorthodox secretion route for NaTrxh. Notably, we found that the fusion protein NaTrxh-GFP(KDEL) is retained in the endoplasmic reticulum and that treatment of NaTrxh-GFP-expressing cells with Brefeldin A leads to its retention in the Golgi, which indicates that NaTrxh uses, to some extent, the endoplasmic reticulum and Golgi apparatus for secretion. Furthermore, we found that Nß contributes to NaTrxh tertiary structure stabilization and that the C-terminus functions in the protein-protein interaction with S-RNase. CONCLUSIONS: The extensions contained in NaTrxh sequence have specific functions on the protein. While the C-terminus directly participates in protein-protein interaction, particularly on its interaction with S-RNase in vitro; the N-terminal extension contains two structurally different motifs: Nα and Nß. Nß, the inner domain (Ala-17 to Pro-27), is essential and enough to target NaTrxh towards the apoplast. Interestingly, when it was fused to GFP, this protein was also found in the cell wall of the onion cells. Although the biochemical features of the N-terminus suggested a non-classical secretion pathway, our results provided evidence that NaTrxh at least uses the endoplasmic reticulum, Golgi apparatus and also vesicles for secretion. Therefore, the Nß domain sequence is suggested to be a novel signal peptide.


Asunto(s)
Nicotiana/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Ribonucleasas/metabolismo , Tiorredoxinas/química , Tiorredoxinas/metabolismo , Secuencias de Aminoácidos , Pared Celular/metabolismo , Pared Celular/ultraestructura , Retículo Endoplásmico/metabolismo , Matriz Extracelular/metabolismo , Aparato de Golgi/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Membranas Intracelulares/metabolismo , Unión Proteica , Estabilidad Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Vías Secretoras , Relación Estructura-Actividad , Nicotiana/ultraestructura
6.
Plant Physiol ; 161(1): 97-107, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23150644

RESUMEN

In Solanaceae, the self-incompatibility S-RNase and S-locus F-box interactions define self-pollen recognition and rejection in an S-specific manner. This interaction triggers a cascade of events involving other gene products unlinked to the S-locus that are crucial to the self-incompatibility response. To date, two essential pistil-modifier genes, 120K and High Top-Band (HT-B), have been identified in Nicotiana species. However, biochemistry and genetics indicate that additional modifier genes are required. We recently reported a Kunitz-type proteinase inhibitor, named NaStEP (for Nicotiana alata Stigma-Expressed Protein), that is highly expressed in the stigmas of self-incompatible Nicotiana species. Here, we report the proteinase inhibitor activity of NaStEP. NaStEP is taken up by both compatible and incompatible pollen tubes, but its suppression in Nicotiana spp. transgenic plants disrupts S-specific pollen rejection; therefore, NaStEP is a novel pistil-modifier gene. Furthermore, HT-B levels within the pollen tubes are reduced when NaStEP-suppressed pistils are pollinated with either compatible or incompatible pollen. In wild-type self-incompatible N. alata, in contrast, HT-B degradation occurs preferentially in compatible pollinations. Taken together, these data show that the presence of NaStEP is required for the stability of HT-B inside pollen tubes during the rejection response, but the underlying mechanism is currently unknown.


Asunto(s)
Inhibidores Enzimáticos/metabolismo , Nicotiana/metabolismo , Péptidos/metabolismo , Proteínas de Plantas/metabolismo , Tubo Polínico/metabolismo , Autoincompatibilidad en las Plantas con Flores , Secuencia de Aminoácidos , Activación Enzimática , Genes de Plantas , Datos de Secuencia Molecular , Péptidos/genética , Extractos Vegetales/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Tubo Polínico/genética , Polinización , Mapeo de Interacción de Proteínas , Estabilidad Proteica , Estructura Secundaria de Proteína , Proteolisis , Interferencia de ARN , Subtilisina/antagonistas & inhibidores , Nicotiana/genética
7.
Ann Bot ; 112(5): 789-800, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23877075

RESUMEN

BACKGROUND AND AIMS: The sexual separation in dioecious species has interested biologists for decades; however, the cellular mechanism leading to unisexuality has been poorly understood. In this study, the cellular changes that lead to male sterility in the functionally dioecious cactus, Opuntia stenopetala, are described. METHODS: The spatial and temporal patterns of programmed cell death (PCD) were determined in the anthers of male and female flowers using scanning electron microscopy analysis and histological observations, focusing attention on the transition from bisexual to unisexual development. In addition, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling assays were used as an indicator of DNA fragmentation to corroborate PCD. KEY RESULTS: PCD was detected in anthers of both female and male flowers, but their patterns differed in time and space. Functionally male individuals developed viable pollen, and normal development involved PCD on each layer of the anther wall, which occurred progressively from the inner (tapetum) to the outer layer (epidermis). Conversely, functional female individuals aborted anthers by premature and displaced PCD. In anthers of female flowers, the first signs of PCD, such as a nucleus with irregular shape, fragmented and condensed chromatin, high vacuolization and condensed cytoplasm, occurred at the microspore mother cell stage. Later these features were observed simultaneously in all anther wall layers, connective tissue and filament. Neither pollen formation nor anther dehiscence was detected in female flowers of O. stenopetala due to total anther disruption. CONCLUSIONS: Temporal and spatial changes in the patterns of PCD are responsible for male sterility of female flowers in O. stenopetala. Male fertility requires the co-ordination of different events, which, when altered, can lead to male sterility and to functionally unisexual individuals. PCD could be a widespread mechanism in the determination of functionally dioecious species.


Asunto(s)
Apoptosis/fisiología , Flores/fisiología , Opuntia/fisiología , Infertilidad Vegetal/fisiología , Supervivencia Celular , Fragmentación del ADN , Flores/crecimiento & desarrollo , Flores/ultraestructura , Meiosis , México , Microscopía Electrónica de Rastreo , Opuntia/crecimiento & desarrollo , Opuntia/ultraestructura , Reproducción
8.
Plant Physiol Biochem ; 205: 108161, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37956612

RESUMEN

In Solanaceae, self-incompatibility is a genetic mechanism that prevents endogamy in plant populations. Expression of the S-determinants, S-RNase, and SLF, is tightly regulated during pistil and pollen development. However, the molecular mechanism of gene expression regulation in S-RNase-based self-incompatibility systems must be better understood. Here, we identified a 1.3 Kbp sequence upstream to the coding region of the functional SC10-RNase allele from the self-incompatible Nicotiana alata, which directs SC10-RNase expression in mature pistils. This SC10-RNase promoter includes a 300 bp region with minimal elements that sustain the SC10-RNase expression. Likewise, a fragment of a transposable element from the Gypsy family of retrotransposons is also present at the -320 bp position. Nevertheless, its presence does not affect the expression of the SC10-RNase in mature pistils. Additionally, we determined that the SC10-RNase promoter undergoes different DNA methylation states during pistil development, being the mCHH methylation context the most frequent close to the transcription start site at pistil maturity. We hypothesized that the Gypsy element at the SC10-RNase promoter might contribute to the DNA methylation remodeling on the three sequence contexts analyzed here. We propose that mCHH methylation enrichment and other regulatory elements in the S-RNase coding region regulate the specific and abundant SC10-RNase expression in mature pistils in N. alata.


Asunto(s)
Nicotiana , Ribonucleasas , Ribonucleasas/genética , Ribonucleasas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Metilación de ADN/genética , Polen/metabolismo , Endorribonucleasas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
PLoS One ; 18(10): e0287087, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37824466

RESUMEN

Soluble secretory proteins with a signal peptide reach the extracellular space through the endoplasmic reticulum-Golgi conventional pathway. During translation, the signal peptide is recognised by the signal recognition particle and results in a co-translational translocation to the endoplasmic reticulum to continue the secretory pathway. However, soluble secretory proteins lacking a signal peptide are also abundant, and several unconventional (endoplasmic reticulum/Golgi independent) pathways have been proposed and some demonstrated. This work describes new features of the secretion signal called Nß, originally identified in NaTrxh, a plant extracellular thioredoxin, that does not possess an orthodox signal peptide. We provide evidence that other proteins, including thioredoxins type h, with similar sequences are also signal peptide-lacking secretory proteins. To be a secretion signal, positions 5, 8 and 9 must contain neutral residues in plant proteins-a negative residue in position 8 is suggested in animal proteins-to maintain the Nß motif negatively charged and a hydrophilic profile. Moreover, our results suggest that the NaTrxh translocation to the endoplasmic reticulum occurs as a post-translational event. Finally, the Nß motif sequence at the N- or C-terminus could be a feature that may help to predict protein localisation, mainly in plant and animal proteins.


Asunto(s)
Retículo Endoplásmico , Señales de Clasificación de Proteína , Animales , Retículo Endoplásmico/metabolismo , Secuencia de Aminoácidos , Transporte de Proteínas , Aparato de Golgi/metabolismo , Plantas
10.
Planta ; 236(1): 225-38, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22328126

RESUMEN

In Opuntia stenopetala, flowers initiate as hermaphrodite; however, at maturity, only the stamens in male flowers and the gynoecium in female flowers become functional. At early developmental stages, growth and morphogenesis of the gynoecium in male flowers cease, forming a short style lacking stigmatic tissue at maturity. Here, an analysis of the masculinization process of this species and its relationship with auxin metabolism during gynoecium morphogenesis is presented. Histological analysis and scanning electron microscopy were performed; auxin levels were immunoanalyzed and exogenous auxin was applied to developing gynoecia. Male flower style-tissue patterning revealed morphological defects in the vascular bundles, stylar canal, and transmitting tissue. These features are similar to those observed in Arabidopsis thaliana mutant plants affected in auxin transport, metabolism, or signaling. Notably, when comparing auxin levels between male and female gynoecia from O. stenopetala at an early developmental stage, we found that they were particularly low in the male gynoecium. Consequently, exogenous auxin application on male gynoecia partially restored the defects of gynoecium development. We therefore hypothesize that, the arrest in male flower gynoecia patterning could be related to altered auxin homeostasis; alternatively, the addition of auxin could compensate for the lack of another unknown factor affecting male flower gynoecium development.


Asunto(s)
Flores/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Morfogénesis/fisiología , Opuntia/crecimiento & desarrollo , Opuntia/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Flores/ultraestructura , Organismos Hermafroditas/citología , Organismos Hermafroditas/crecimiento & desarrollo , Caracteres Sexuales , Procesos de Determinación del Sexo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA