Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Mol Cell ; 72(4): 778-785.e3, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30454562

RESUMEN

Proper control of the mitochondrial Ca2+ uniporter's pore (MCU) is required to allow Ca2+-dependent activation of oxidative metabolism and to avoid mitochondrial Ca2+ overload and cell death. The MCU's gatekeeping and cooperative activation is mediated by the Ca2+-sensing MICU1 protein, which has been proposed to form dimeric complexes anchored to the EMRE scaffold of MCU. We unexpectedly find that MICU1 suppresses inhibition of MCU by ruthenium red/Ru360, which bind to MCU's DIME motif, the selectivity filter. This led us to recognize in MICU1's sequence a putative DIME interacting domain (DID), which is required for both gatekeeping and cooperative activation of MCU and for cell survival. Thus, we propose that MICU1 has to interact with the D-ring formed by the DIME domains in MCU to control the uniporter.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Compuestos de Rutenio/farmacología , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Transporte de Catión/genética , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Células HEK293 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Masculino , Potencial de la Membrana Mitocondrial , Ratones , Ratones Noqueados , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética
2.
Circ Res ; 132(11): e171-e187, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37057625

RESUMEN

BACKGROUND: Cardiac contractile function requires high energy from mitochondria, and Ca2+ from the sarcoplasmic reticulum (SR). Via local Ca2+ transfer at close mitochondria-SR contacts, cardiac excitation feedforward regulates mitochondrial ATP production to match surges in demand (excitation-bioenergetics coupling). However, pathological stresses may cause mitochondrial Ca2+ overload, excessive reactive oxygen species production and permeability transition, risking homeostatic collapse and myocyte loss. Excitation-bioenergetics coupling involves mitochondria-SR tethers but the role of tethering in cardiac physiology/pathology is debated. Endogenous tether proteins are multifunctional; therefore, nonselective targets to scrutinize interorganelle linkage. Here, we assessed the physiological/pathological relevance of selective chronic enhancement of cardiac mitochondria-SR tethering. METHODS: We introduced to mice a cardiac muscle-specific engineered tether (linker) transgene with a fluorescent protein core and deployed 2D/3D electron microscopy, biochemical approaches, fluorescence imaging, in vivo and ex vivo cardiac performance monitoring and stress challenges to characterize the linker phenotype. RESULTS: Expressed in the mature cardiomyocytes, the linker expanded and tightened individual mitochondria-junctional SR contacts; but also evoked a marked remodeling with large dense mitochondrial clusters that excluded dyads. Yet, excitation-bioenergetics coupling remained well-preserved, likely due to more longitudinal mitochondria-dyad contacts and nanotunnelling between mitochondria exposed to junctional SR and those sealed away from junctional SR. Remarkably, the linker decreased female vulnerability to acute massive ß-adrenergic stress. It also reduced myocyte death and mitochondrial calcium-overload-associated myocardial impairment in ex vivo ischemia/reperfusion injury. CONCLUSIONS: We propose that mitochondria-SR/endoplasmic reticulum contacts operate at a structural optimum. Although acute changes in tethering may cause dysfunction, upon chronic enhancement of contacts from early life, adaptive remodeling of the organelles shifts the system to a new, stable structural optimum. This remodeling balances the individually enhanced mitochondrion-junctional SR crosstalk and excitation-bioenergetics coupling, by increasing the connected mitochondrial pool and, presumably, Ca2+/reactive oxygen species capacity, which then improves the resilience to stresses associated with dysregulated hyperactive Ca2+ signaling.


Asunto(s)
Señalización del Calcio , Retículo Sarcoplasmático , Femenino , Ratones , Animales , Retículo Sarcoplasmático/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Mitocondrias Cardíacas/metabolismo , Calcio/metabolismo
3.
Basic Res Cardiol ; 118(1): 15, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37138037

RESUMEN

Calcium transfer into the mitochondrial matrix during sarcoplasmic reticulum (SR) Ca2+ release is essential to boost energy production in ventricular cardiomyocytes (VCMs) and match increased metabolic demand. Mitochondria from female hearts exhibit lower mito-[Ca2+] and produce less reactive oxygen species (ROS) compared to males, without change in respiration capacity. We hypothesized that in female VCMs, more efficient electron transport chain (ETC) organization into supercomplexes offsets the deficit in mito-Ca2+ accumulation, thereby reducing ROS production and stress-induced intracellular Ca2+ mishandling. Experiments using mitochondria-targeted biosensors confirmed lower mito-ROS and mito-[Ca2+] in female rat VCMs challenged with ß-adrenergic agonist isoproterenol compared to males. Biochemical studies revealed decreased mitochondria Ca2+ uniporter expression and increased supercomplex assembly in rat and human female ventricular tissues vs male. Importantly, western blot analysis showed higher expression levels of COX7RP, an estrogen-dependent supercomplex assembly factor in female heart tissues vs males. Furthermore, COX7RP was decreased in hearts from aged and ovariectomized female rats. COX7RP overexpression in male VCMs increased mitochondrial supercomplexes, reduced mito-ROS and spontaneous SR Ca2+ release in response to ISO. Conversely, shRNA-mediated knockdown of COX7RP in female VCMs reduced supercomplexes and increased mito-ROS, promoting intracellular Ca2+ mishandling. Compared to males, mitochondria in female VCMs exhibit higher ETC subunit incorporation into supercomplexes, supporting more efficient electron transport. Such organization coupled to lower levels of mito-[Ca2+] limits mito-ROS under stress conditions and lowers propensity to pro-arrhythmic spontaneous SR Ca2+ release. We conclude that sexual dimorphism in mito-Ca2+ handling and ETC organization may contribute to cardioprotection in healthy premenopausal females.


Asunto(s)
Miocitos Cardíacos , Retículo Sarcoplasmático , Ratas , Masculino , Femenino , Animales , Humanos , Anciano , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Caracteres Sexuales , Mitocondrias/metabolismo , Señalización del Calcio , Calcio/metabolismo
4.
J Biol Chem ; 294(28): 10807-10818, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31097542

RESUMEN

The mitochondrial matrix ATPase associated with diverse cellular activities (m-AAA) protease spastic paraplegia 7 (SPG7) has been recently implicated as either a negative or positive regulatory component of the mitochondrial permeability transition pore (mPTP) by two research groups. To address this controversy, we investigated possible mechanisms that explain the discrepancies between these two studies. We found that loss of the SPG7 gene increased resistance to Ca2+-induced mPTP opening. However, this occurs independently of cyclophilin D (cyclosporine A insensitive) rather it is through decreased mitochondrial Ca2+ concentrations and subsequent adaptations mediated by impaired formation of functional mitochondrial Ca2+ uniporter complexes. We found that SPG7 directs the m-AAA complex to favor association with the mitochondrial Ca2+ uniporter (MCU) and MCU processing regulates higher order MCU-complex formation. The results suggest that SPG7 does not constitute a core component of the mPTP but can modulate mPTP through regulation of the basal mitochondrial Ca2+ concentration.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Canales de Calcio/metabolismo , Metaloendopeptidasas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/fisiología , Calcio/metabolismo , Permeabilidad de la Membrana Celular/fisiología , Células HEK293 , Humanos , Metaloendopeptidasas/fisiología , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Membranas Mitocondriales/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Necrosis por Permeabilidad de la Transmembrana Mitocondrial/fisiología , Paraplejía/metabolismo , ATPasas de Translocación de Protón/metabolismo , Paraplejía Espástica Hereditaria/metabolismo
5.
Proc Natl Acad Sci U S A ; 114(5): E859-E868, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28096338

RESUMEN

Mitochondrial fusion is thought to be important for supporting cardiac contractility, but is hardly detectable in cultured cardiomyocytes and is difficult to directly evaluate in the heart. We overcame this obstacle through in vivo adenoviral transduction with matrix-targeted photoactivatable GFP and confocal microscopy. Imaging in whole rat hearts indicated mitochondrial network formation and fusion activity in ventricular cardiomyocytes. Promptly after isolation, cardiomyocytes showed extensive mitochondrial connectivity and fusion, which decayed in culture (at 24-48 h). Fusion manifested both as rapid content mixing events between adjacent organelles and slower events between both neighboring and distant mitochondria. Loss of fusion in culture likely results from the decline in calcium oscillations/contractile activity and mitofusin 1 (Mfn1), because (i) verapamil suppressed both contraction and mitochondrial fusion, (ii) after spontaneous contraction or short-term field stimulation fusion activity increased in cardiomyocytes, and (iii) ryanodine receptor-2-mediated calcium oscillations increased fusion activity in HEK293 cells and complementing changes occurred in Mfn1. Weakened cardiac contractility in vivo in alcoholic animals is also associated with depressed mitochondrial fusion. Thus, attenuated mitochondrial fusion might contribute to the pathogenesis of cardiomyopathy.


Asunto(s)
Señalización del Calcio/fisiología , Mitocondrias Cardíacas/fisiología , Dinámicas Mitocondriales/fisiología , Contracción Miocárdica/fisiología , Animales , Línea Celular , Genes Reporteros , Vectores Genéticos , Humanos , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Masculino , Microscopía Confocal , Mitocondrias Cardíacas/ultraestructura , Ratas , Ratas Sprague-Dawley , Transducción Genética
6.
Mol Cell ; 39(1): 121-32, 2010 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-20603080

RESUMEN

The ER-mitochondrial junction provides a local calcium signaling domain that is critical for both matching energy production with demand and the control of apoptosis. Here, we visualize ER-mitochondrial contact sites and monitor the localized [Ca(2+)] changes ([Ca(2+)](ER-mt)) using drug-inducible fluorescent interorganelle linkers. We show that all mitochondria have contacts with the ER, but plasma membrane (PM)-mitochondrial contacts are less frequent because of interleaving ER stacks in both RBL-2H3 and H9c2 cells. Single mitochondria display discrete patches of ER contacts and show heterogeneity in the ER-mitochondrial Ca(2+) transfer. Pericam-tagged linkers revealed IP(3)-induced [Ca(2+)](ER-mt) signals that exceeded 9 microM and endured buffering bulk cytoplasmic [Ca(2+)] increases. Altering linker length to modify the space available for the Ca(2+) transfer machinery had a biphasic effect on [Ca(2+)](ER-mt) signals. These studies provide direct evidence for the existence of high-Ca(2+) microdomains between the ER and mitochondria and suggest an optimal gap width for efficient Ca(2+) transfer.


Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Imagenología Tridimensional/métodos , Mitocondrias/metabolismo , Animales , Señalización del Calcio , Línea Celular , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Permeabilidad de la Membrana Celular , Supervivencia Celular , Retículo Endoplásmico/ultraestructura , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Ratas , Factores de Tiempo
7.
J Biol Chem ; 291(44): 23343-23362, 2016 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-27637331

RESUMEN

Control of myocardial energetics by Ca2+ signal propagation to the mitochondrial matrix includes local Ca2+ delivery from sarcoplasmic reticulum (SR) ryanodine receptors (RyR2) to the inner mitochondrial membrane (IMM) Ca2+ uniporter (mtCU). mtCU activity in cardiac mitochondria is relatively low, whereas the IMM surface is large, due to extensive cristae folding. Hence, stochastically distributed mtCU may not suffice to support local Ca2+ transfer. We hypothesized that mtCU concentrated at mitochondria-SR associations would promote the effective Ca2+ transfer. mtCU distribution was determined by tracking MCU and EMRE, the proteins essential for channel formation. Both proteins were enriched in the IMM-outer mitochondrial membrane (OMM) contact point submitochondrial fraction and, as super-resolution microscopy revealed, located more to the mitochondrial periphery (inner boundary membrane) than inside the cristae, indicating high accessibility to cytosol-derived Ca2+ inputs. Furthermore, MCU immunofluorescence distribution was biased toward the mitochondria-SR interface (RyR2), and this bias was promoted by Ca2+ signaling activity in intact cardiomyocytes. The SR fraction of heart homogenate contains mitochondria with extensive SR associations, and these mitochondria are highly enriched in EMRE. Size exclusion chromatography suggested for EMRE- and MCU-containing complexes a wide size range and also revealed MCU-containing complexes devoid of EMRE (thus disabled) in the mitochondrial but not the SR fraction. Functional measurements suggested more effective mtCU-mediated Ca2+ uptake activity by the mitochondria of the SR than of the mitochondrial fraction. Thus, mtCU "hot spots" can be formed at the cardiac muscle mitochondria-SR associations via localization and assembly bias, serving local Ca2+ signaling and the excitation-energetics coupling.


Asunto(s)
Canales de Calcio/metabolismo , Miocardio/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio/genética , Señalización del Calcio , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/metabolismo , Membranas Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , Ratas , Ratas Sprague-Dawley , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo
8.
Handb Exp Pharmacol ; 240: 129-156, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28194521

RESUMEN

Mitochondrial Ca2+ uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca2+ uptake and our current understanding of mitochondrial Ca2+ homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca2+ uniporter complex.


Asunto(s)
Canales de Calcio/fisiología , Animales , Calcio/metabolismo , Canales de Calcio/química , Canales de Calcio/efectos de los fármacos , Metabolismo Energético , Homeostasis , Humanos , Mitocondrias/metabolismo
9.
J Biol Chem ; 289(12): 8170-81, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24469450

RESUMEN

Reactive oxygen species (ROS) stimulate cytoplasmic [Ca(2+)] ([Ca(2+)]c) signaling, but the exact role of the IP3 receptors (IP3R) in this process remains unclear. IP3Rs serve as a potential target of ROS produced by both ER and mitochondrial enzymes, which might locally expose IP3Rs at the ER-mitochondrial associations. Also, IP3Rs contain multiple reactive thiols, common molecular targets of ROS. Therefore, we have examined the effect of superoxide anion (O2) on IP3R-mediated Ca(2+) signaling. In human HepG2, rat RBL-2H3, and chicken DT40 cells, we observed [Ca(2+)]c spikes and frequency-modulated oscillations evoked by a O2 donor, xanthine (X) + xanthine oxidase (XO), dose-dependently. The [Ca(2+)]c signal was mediated by ER Ca(2+) mobilization. X+XO added to permeabilized cells promoted the [Ca(2+)]c rise evoked by submaximal doses of IP3, indicating that O2 directly sensitizes IP3R-mediated Ca(2+) release. In response to X+XO, DT40 cells lacking two of three IP3R isoforms (DKO) expressing either type 1 (DKO1) or type 2 IP3Rs (DKO2) showed a [Ca(2+)]c signal, whereas DKO expressing type 3 IP3R (DKO3) did not. By contrast, IgM that stimulates IP3 formation, elicited a [Ca(2+)]c signal in every DKO. X+XO also facilitated the Ca(2+) release evoked by submaximal IP3 in permeabilized DKO1 and DKO2 but was ineffective in DKO3 or in DT40 lacking every IP3R (TKO). However, X+XO could also facilitate the effect of suboptimal IP3 in TKO transfected with rat IP3R3. Although in silico studies failed to identify a thiol missing in the chicken IP3R3, an X+XO-induced redox change was documented only in the rat IP3R3. Thus, ROS seem to specifically sensitize IP3Rs through a thiol group(s) within the IP3R, which is probably inaccessible in the chicken IP3R3.


Asunto(s)
Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Secuencia de Aminoácidos , Animales , Señalización del Calcio , Línea Celular , Pollos , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/química , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Isoformas de Proteínas/metabolismo , Ratas , Alineación de Secuencia , Especificidad de la Especie
10.
J Cell Sci ; 126(Pt 14): 2965-78, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23843617

RESUMEN

Mitochondria are strategically and dynamically positioned in the cell to spatially coordinate ATP production with energy needs and to allow the local exchange of material with other organelles. Interactions of mitochondria with the sarco-endoplasmic reticulum (SR/ER) have been receiving much attention owing to emerging evidence on the role these sites have in cell signaling, dynamics and biosynthetic pathways. One of the most important physiological and pathophysiological paradigms for SR/ER-mitochondria interactions is in cardiac and skeletal muscle. The contractile activity of these tissues has to be matched by mitochondrial ATP generation that is achieved, at least in part, by propagation of Ca(2+) signals from SR to mitochondria. However, the muscle has a highly ordered structure, providing only limited opportunity for mitochondrial dynamics and interorganellar interactions. This Commentary focuses on the latest advances in the structure, function and disease relevance of the communication between SR/ER and mitochondria in muscle. In particular, we discuss the recent demonstration of SR/ER-mitochondria tethers that are formed by multiple proteins, and local Ca(2+) transfer between SR/ER and mitochondria.


Asunto(s)
Retículo Endoplásmico/fisiología , Mitocondrias Cardíacas/fisiología , Mitocondrias Musculares/fisiología , Membranas Mitocondriales/fisiología , Músculo Esquelético/fisiología , Miocitos Cardíacos/fisiología , Retículo Sarcoplasmático/fisiología , Animales , Transporte Biológico Activo , Señalización del Calcio , Humanos , Músculo Esquelético/ultraestructura , Miocitos Cardíacos/ultraestructura , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
11.
Circ Res ; 111(7): 863-75, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22777004

RESUMEN

RATIONALE: Mitochondrial Ca(2+) uptake is essential for the bioenergetic feedback response through stimulation of Krebs cycle dehydrogenases. Close association of mitochondria to the sarcoplasmic reticulum (SR) may explain efficient mitochondrial Ca(2+) uptake despite low Ca(2+) affinity of the mitochondrial Ca(2+) uniporter. However, the existence of such mitochondrial Ca(2+) microdomains and their functional role are presently unresolved. Mitofusin (Mfn) 1 and 2 mediate mitochondrial outer membrane fusion, whereas Mfn2 but not Mfn1 tethers endoplasmic reticulum to mitochondria in noncardiac cells. OBJECTIVE: To elucidate roles for Mfn1 and 2 in SR-mitochondrial tethering, Ca(2+) signaling, and bioenergetic regulation in cardiac myocytes. METHODS AND RESULTS: Fruit fly heart tubes deficient of the Drosophila Mfn ortholog MARF had increased contraction-associated and caffeine-sensitive Ca(2+) release, suggesting a role for Mfn in SR Ca(2+) handling. Whereas cardiac-specific Mfn1 ablation had no effects on murine heart function or Ca(2+) cycling, Mfn2 deficiency decreased cardiomyocyte SR-mitochondrial contact length by 30% and reduced the content of SR-associated proteins in mitochondria-associated membranes. This was associated with decreased mitochondrial Ca(2+) uptake (despite unchanged mitochondrial membrane potential) but increased steady-state and caffeine-induced SR Ca(2+) release. Accordingly, Ca(2+)-induced stimulation of Krebs cycle dehydrogenases during ß-adrenergic stimulation was hampered in Mfn2-KO but not Mfn1-KO myocytes, evidenced by oxidation of the redox states of NAD(P)H/NAD(P)(+) and FADH(2)/FAD. CONCLUSIONS: Physical tethering of SR and mitochondria via Mfn2 is essential for normal interorganelle Ca(2+) signaling in the myocardium, consistent with a requirement for SR-mitochondrial Ca(2+) signaling through microdomains in the cardiomyocyte bioenergetic feedback response to physiological stress.


Asunto(s)
Señalización del Calcio/fisiología , Metabolismo Energético/fisiología , GTP Fosfohidrolasas/fisiología , Mitocondrias Cardíacas/fisiología , Miocitos Cardíacos/metabolismo , Retículo Sarcoplasmático/fisiología , Animales , Calcio/metabolismo , Drosophila , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Retroalimentación Fisiológica/fisiología , GTP Fosfohidrolasas/deficiencia , GTP Fosfohidrolasas/genética , Potencial de la Membrana Mitocondrial/fisiología , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos , Ratones Noqueados , Modelos Animales , Miocitos Cardíacos/citología , Miocitos Cardíacos/ultraestructura , Técnicas de Placa-Clamp
12.
Contact (Thousand Oaks) ; 7: 25152564241229273, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38362008

RESUMEN

Calcium signal propagation from endoplasmic reticulum (ER) to mitochondria regulates a multitude of mitochondrial and cell functions, including oxidative ATP production and cell fate decisions. Ca2+ transfer is optimal at the ER-mitochondrial contacts, where inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) can locally expose the mitochondrial Ca2+ uniporter (mtCU) to high [Ca2+] nanodomains. The Ca2+ loading state of the ER (Ca2 + ER) can vary broadly in physiological and pathological scenarios, however, the correlation between Ca2 + ER and the local Ca2+ transfer is unclear. Here, we studied IP3-induced Ca2+ transfer to mitochondria at different Ca2 + ER in intact and permeabilized RBL-2H3 cells via fluorescence measurements of cytoplasmic [Ca2+] ([Ca2+]c) and mitochondrial matrix [Ca2+] ([Ca2+]m). Preincubation of intact cells in high versus low extracellular [Ca2+] caused disproportionally greater increase in [Ca2+]m than [Ca2+]c responses to IP3-mobilizing agonist. Increasing Ca2 + ER by small Ca2+ boluses in suspensions of permeabilized cells supralinearly enhanced the mitochondrial Ca2+ uptake from IP3-induced Ca2+ release. The IP3-induced local [Ca2+] spikes exposing the mitochondrial surface measured using a genetically targeted sensor appeared to linearly correlate with Ca2 + ER, indicating that amplification happened in the mitochondria. Indeed, overexpression of an EF-hand deficient mutant of the mtCU gatekeeper MICU1 reduced the cooperativity of mitochondrial Ca2+ uptake. Interestingly, the IP3-induced [Ca2+]m signal plateaued at high Ca2 + ER, indicating activation of a matrix Ca2+ binding/chelating species. Mitochondria thus seem to maintain a "working [Ca2+]m range" via a low-affinity and high-capacity buffer species, and the ER loading steeply enhances the IP3R-linked [Ca2+]m signals in this working range.

13.
Sci Adv ; 10(19): eadh0798, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38718107

RESUMEN

Mutations in the LMNA gene encoding lamins A/C cause an array of tissue-selective diseases, with the heart being the most commonly affected organ. Despite progress in understanding the perturbations emanating from LMNA mutations, an integrative understanding of the pathogenesis underlying cardiac dysfunction remains elusive. Using a novel conditional deletion model capable of translatome profiling, we observed that cardiomyocyte-specific Lmna deletion in adult mice led to rapid cardiomyopathy with pathological remodeling. Before cardiac dysfunction, Lmna-deleted cardiomyocytes displayed nuclear abnormalities, Golgi dilation/fragmentation, and CREB3-mediated stress activation. Translatome profiling identified MED25 activation, a transcriptional cofactor that regulates Golgi stress. Autophagy is disrupted in the hearts of these mice, which can be recapitulated by disrupting the Golgi. Systemic administration of modulators of autophagy or ER stress significantly delayed cardiac dysfunction and prolonged survival. These studies support a hypothesis wherein stress responses emanating from the perinuclear space contribute to the LMNA cardiomyopathy development.


Asunto(s)
Cardiomiopatías , Lamina Tipo A , Miocitos Cardíacos , Membrana Nuclear , Animales , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Ratones , Membrana Nuclear/metabolismo , Cardiomiopatías/metabolismo , Cardiomiopatías/etiología , Cardiomiopatías/patología , Cardiomiopatías/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Autofagia , Estrés Fisiológico , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Aparato de Golgi/metabolismo , Ratones Noqueados
14.
Cell Chem Biol ; 30(6): 606-617.e4, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37244260

RESUMEN

Mitochondrial Ca2+ homeostasis loses its control in many diseases and might provide therapeutic targets. Mitochondrial Ca2+ uptake is mediated by the uniporter channel (mtCU), formed by MCU and is regulated by the Ca2+-sensing gatekeeper, MICU1, which shows tissue-specific stoichiometry. An important gap in knowledge is the molecular mechanism of the mtCU activators and inhibitors. We report that all pharmacological activators of the mtCU (spermine, kaempferol, SB202190) act in a MICU1-dependent manner, likely by binding to MICU1 and preventing MICU1's gatekeeping activity. These agents also sensitized the mtCU to inhibition by Ru265 and enhanced the Mn2+-induced cytotoxicity as previously seen with MICU1 deletion. Thus, MCU gating by MICU1 is the target of mtCU agonists and is a barrier for inhibitors like RuRed/Ru360/Ru265. The varying MICU1:MCU ratios result in different outcomes for both mtCU agonists and antagonists in different tissues, which is relevant for both pre-clinical research and therapeutic efforts.


Asunto(s)
Canales de Calcio , Proteínas de Transporte de Membrana Mitocondrial , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Canales de Calcio/metabolismo , Mitocondrias/metabolismo , Transporte Biológico , Calcio/metabolismo
15.
bioRxiv ; 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-36824975

RESUMEN

Mutations in the LMNA gene encoding nuclear lamins A/C cause a diverse array of tissue-selective diseases, with the heart being the most commonly affected organ. Despite progress in understanding the molecular perturbations emanating from LMNA mutations, an integrative understanding of the pathogenesis leading to cardiac dysfunction remains elusive. Using a novel cell-type specific Lmna deletion mouse model capable of translatome profiling, we found that cardiomyocyte-specific Lmna deletion in adult mice led to rapid cardiomyopathy with pathological remodeling. Prior to the onset of cardiac dysfunction, lamin A/C-depleted cardiomyocytes displayed nuclear envelope deterioration, golgi dilation/fragmentation, and CREB3-mediated golgi stress activation. Translatome profiling identified upregulation of Med25, a transcriptional co-factor that can selectively dampen UPR axes. Autophagy is disrupted in the hearts of these mice, which can be recapitulated by disrupting the golgi or inducing nuclear damage by increased matrix stiffness. Systemic administration of pharmacological modulators of autophagy or ER stress significantly improved the cardiac function. These studies support a hypothesis wherein stress responses emanating from the perinuclear space contribute to the development of LMNA cardiomyopathy. Teaser: Interplay of stress responses underlying the development of LMNA cardiomyopathy.

16.
Pflugers Arch ; 464(1): 101-9, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22526459

RESUMEN

Mitochondrial structure and function are central to cell physiology and are mutually interdependent. Mitochondria represent a primary target of the alcohol-induced tissue injury, particularly in the liver, where the metabolic effects of ethanol are predominant. However, the effect of ethanol on hepatic mitochondrial morphology and dynamics remain to be established. In the present work, we employed the organelle-targeted photoactivatable fluorescent protein technology and electron microscopy to study hepatic mitochondrial structure and dynamics. Hepatocytes in perfused liver as well as in primary cultures showed mostly discrete globular or short tubular mitochondria. The mitochondria showed few fusion events and little movement activity. By contrast, human hepatoma (HepG2)-derived VL-17A cells, expressing the major hepatic ethanol metabolizing enzymes, alcohol dehydrogenase and cytochrome P450 2E1, have elongated and interconnected mitochondria showing matrix continuity and many fusion events. Hepatocytes isolated from chronically ethanol-fed rats showed some increase in mitochondrial volume and exhibited a substantial suppression of mitochondrial dynamics. In VL-17A cells, prolonged ethanol exposure also caused decreased mitochondrial continuity and dynamics. Collectively, these results indicate that mitochondria in normal hepatocytes show relatively slow dynamics, which is very sensitive to suppression by ethanol exposure.


Asunto(s)
Etanol/toxicidad , Hepatocitos/ultraestructura , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/ultraestructura , Animales , Línea Celular Tumoral , Hepatocitos/efectos de los fármacos , Humanos , Masculino , Tamaño Mitocondrial/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
17.
Free Radic Biol Med ; 181: 241-250, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35158029

RESUMEN

Many unanswered questions of physiology and medicine require in vivo studies of cellular processes in murine models. These processes commonly depend on intracellular Ca2+ and redox alterations. Fluorescent dyes have succeeded in real-time intracellular monitoring of Ca2+, redox and the different Reactive Oxygen Species (ROS) in single cells, but have seldomly been applied in vivo. The advance in Fluorescent Protein (FP) technology has created alternative tools for the same task, which can be delivered with viruses or genomic integration strategies into mice. With the availability of several color options for both Ca2+ and redox reporting FP, multiparameter measurements have also become feasible: measuring different species, and the same parameter at different locations using organelle-specific targeting sequences at the same time. We, here, focus on mice with genomic integration of Ca2+ and redox reporters, provide a list of the available models and summarize the strategies of their generation and utilization. We also describe a novel Calcium DoubleSpy mouse model that conditionally expresses both RCaMP in the cytoplasm and GEM-GECO1 in the mitochondrial matrix, allowing the study of mitochondrial Ca2+ related physiology and pathogenesis simultaneously in two distinct intracellular compartments.


Asunto(s)
Calcio , Mitocondrias , Animales , Calcio/metabolismo , Señalización del Calcio , Colorantes Fluorescentes/metabolismo , Ratones , Ratones Transgénicos , Mitocondrias/genética , Mitocondrias/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
18.
Nat Commun ; 13(1): 6779, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36351901

RESUMEN

Endoplasmic reticulum-mitochondria contacts (ERMCs) are restructured in response to changes in cell state. While this restructuring has been implicated as a cause or consequence of pathology in numerous systems, the underlying molecular dynamics are poorly understood. Here, we show means to visualize the capture of motile IP3 receptors (IP3Rs) at ERMCs and document the immediate consequences for calcium signaling and metabolism. IP3Rs are of particular interest because their presence provides a scaffold for ERMCs that mediate local calcium signaling, and their function outside of ERMCs depends on their motility. Unexpectedly, in a cell model with little ERMC Ca2+ coupling, IP3Rs captured at mitochondria promptly mediate Ca2+ transfer, stimulating mitochondrial oxidative metabolism. The Ca2+ transfer does not require linkage with a pore-forming protein in the outer mitochondrial membrane. Thus, motile IP3Rs can traffic in and out of ERMCs, and, when 'parked', mediate calcium signal propagation to the mitochondria, creating a dynamic arrangement that supports local communication.


Asunto(s)
Señalización del Calcio , Mitocondrias , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Señalización del Calcio/fisiología , Mitocondrias/metabolismo , Respiración de la Célula , Calcio/metabolismo , Estrés Oxidativo
19.
JCI Insight ; 7(9)2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35531957

RESUMEN

Friedreich's ataxia (FRDA) is an inherited disorder caused by reduced levels of frataxin (FXN), which is required for iron-sulfur cluster biogenesis. Neurological and cardiac comorbidities are prominent and have been a major focus of study. Skeletal muscle has received less attention despite indications that FXN loss affects it. Here, we show that lean mass is lower, whereas body mass index is unaltered, in separate cohorts of adults and children with FRDA. In adults, lower lean mass correlated with disease severity. To further investigate FXN loss in skeletal muscle, we used a transgenic mouse model of whole-body inducible and progressive FXN depletion. There was little impact of FXN loss when FXN was approximately 20% of control levels. When residual FXN was approximately 5% of control levels, muscle mass was lower along with absolute grip strength. When we examined mechanisms that can affect muscle mass, only global protein translation was lower, accompanied by integrated stress response (ISR) activation. Also in mice, aerobic exercise training, initiated prior to the muscle mass difference, improved running capacity, yet, muscle mass and the ISR remained as in untrained mice. Thus, FXN loss can lead to lower lean mass, with ISR activation, both of which are insensitive to exercise training.


Asunto(s)
Ataxia de Friedreich , Proteínas de Unión a Hierro , Animales , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Ratones , Ratones Transgénicos , Músculo Esquelético/metabolismo , Frataxina
20.
Am J Physiol Heart Circ Physiol ; 301(5): H1907-15, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21856920

RESUMEN

Propagation of ryanodine receptor (RyR2)-derived Ca(2+) signals to the mitochondrial matrix supports oxidative ATP production or facilitates mitochondrial apoptosis in cardiac muscle. Ca(2+) transfer likely occurs locally at focal associations of the sarcoplasmic reticulum (SR) and mitochondria, which are secured by tethers. The outer mitochondrial membrane and inner mitochondrial membrane (OMM and IMM, respectively) also form tight focal contacts (contact points) that are enriched in voltage-dependent anion channels, the gates of OMM for Ca(2+). Contact points could offer the shortest Ca(2+) transfer route to the matrix; however, their alignment with the SR-OMM associations remains unclear. Here, in rat heart we have studied the distribution of mitochondria-associated SR in submitochondrial membrane fractions and evaluated the colocalization of SR-OMM associations with contact points using transmission electron microscopy. In a sucrose gradient designed for OMM purification, biochemical assays revealed lighter fractions enriched in OMM only and heavier fractions containing OMM, IMM, and SR markers. Pure OMM fractions were enriched in mitofusin 2, an ~80 kDa mitochondrial fusion protein and SR-mitochondrial tether candidate, whereas in fractions of OMM + IMM + SR, a lighter (~50 kDa) band detected by antibodies raised against the NH(2) terminus of mitofusin 2 was dominating. Transmission electron microscopy revealed mandatory presence of contact points at the junctional SR-mitochondrial interface versus a random presence along matching SR-free OMM segments. For each SR-mitochondrial junction at least one tether was attached to contact points. These data establish the contact points as anchorage sites for the SR-mitochondrial physical coupling. Close coupling of the SR, OMM, and IMM is likely to provide a favorable spatial arrangement for local ryanodine receptor-mitochondrial Ca(2+) signaling.


Asunto(s)
Señalización del Calcio , Comunicación Celular , Mitocondrias Cardíacas/metabolismo , Membranas Mitocondriales/metabolismo , Miocardio/metabolismo , Retículo Sarcoplasmático/metabolismo , Animales , Fraccionamiento Celular , Células Cultivadas , GTP Fosfohidrolasas/deficiencia , GTP Fosfohidrolasas/genética , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Mitocondrias Cardíacas/ultraestructura , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/metabolismo , Miocardio/ultraestructura , NADP/metabolismo , Oxidorreductasas/metabolismo , Ratas , Ratas Sprague-Dawley , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/ultraestructura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA