Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Brain Topogr ; 32(2): 229-239, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30341590

RESUMEN

Accurate source localization of electroencephalographic (EEG) signals requires detailed information about the geometry and physical properties of head tissues. Indeed, these strongly influence the propagation of neural activity from the brain to the sensors. Finite difference methods (FDMs) are head modelling approaches relying on volumetric data information, which can be directly obtained using magnetic resonance (MR) imaging. The specific goal of this study is to develop a computationally efficient FDM solution that can flexibly integrate voxel-wise conductivity and anisotropy information. Given the high computational complexity of FDMs, we pay particular attention to attain a very low numerical error, as evaluated using exact analytical solutions for spherical volume conductor models. We then demonstrate the computational efficiency of our FDM numerical solver, by comparing it with alternative solutions. Finally, we apply the developed head modelling tool to high-resolution MR images from a real experimental subject, to demonstrate the potential added value of incorporating detailed voxel-wise conductivity and anisotropy information. Our results clearly show that the developed FDM can contribute to a more precise head modelling, and therefore to a more reliable use of EEG as a brain imaging tool.


Asunto(s)
Electroencefalografía/métodos , Neuroimagen/métodos , Algoritmos , Anisotropía , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico , Interpretación Estadística de Datos , Electroencefalografía/estadística & datos numéricos , Cabeza , Humanos , Imagen por Resonancia Magnética , Modelos Anatómicos , Reproducibilidad de los Resultados
2.
Comput Biol Med ; 178: 108704, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852398

RESUMEN

INTRODUCTION: High-density electroencephalography (hdEEG) is a technique used for the characterization of the neural activity and connectivity in the human brain. The analysis of EEG data involves several steps, including signal pre-processing, head modelling, source localization and activity/connectivity quantification. Visual check of the analysis steps is often necessary, making the process time- and resource-consuming and, therefore, not feasible for large datasets. FINDINGS: Here we present the Noninvasive Electrophysiology Toolbox (NET), an open-source software for large-scale analysis of hdEEG data, running on the cross-platform MATLAB environment. NET combines all the tools required for a complete hdEEG analysis workflow, from raw signals to final measured values. By relying on reconstructed neural signals in the brain, NET can perform traditional analyses of time-locked neural responses, as well as more advanced functional connectivity and brain mapping analyses. The extracted quantitative neural data can be exported to provide broad compatibility with other software. CONCLUSIONS: NET is freely available (https://github.com/bind-group-kul/net) under the GNU public license for non-commercial use and open-source development, together with a graphical user interface (GUI) and a user tutorial. While NET can be used interactively with the GUI, it is primarily aimed at unsupervised automation to process large hdEEG datasets efficiently. Its implementation creates indeed a highly customizable program suitable for analysis automation and tight integration into existing workflows.


Asunto(s)
Encéfalo , Electroencefalografía , Procesamiento de Señales Asistido por Computador , Programas Informáticos , Humanos , Electroencefalografía/métodos , Encéfalo/fisiología , Red Nerviosa/fisiología , Mapeo Encefálico/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA