Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Lipid Res ; 62: 100043, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33093236

RESUMEN

Roux-en-Y gastric bypass (RYGB) is one of the most commonly performed weight-loss procedures, but how severe obesity and RYGB affect circulating HDL-associated microRNAs (miRNAs) remains unclear. Here, we aim to investigate how HDL-associated miRNAs are regulated in severe obesity and how weight loss after RYGB surgery affects HDL-miRNAs. Plasma HDLs were isolated from patients with severe obesity (n = 53) before and 6 and 12 months after RYGB by immunoprecipitation using goat anti-human apoA-I microbeads. HDLs were also isolated from 18 healthy participants. miRNAs were extracted from isolated HDL and levels of miR-24, miR-126, miR-222, and miR-223 were determined by TaqMan miRNA assays. We found that HDL-associated miR-126, miR-222, and miR-223 levels, but not miR-24 levels, were significantly higher in patients with severe obesity when compared with healthy controls. There were significant increases in HDL-associated miR-24, miR-222, and miR-223 at 12 months after RYGB. Additionally, cholesterol efflux capacity and paraoxonase activity were increased and intercellular adhesion molecule-1 (ICAM-1) levels decreased. The increases in HDL-associated miR-24 and miR-223 were positively correlated with an increase in cholesterol efflux capacity (r = 0.326, P = 0.027 and r = 0.349, P = 0.017, respectively). An inverse correlation was observed between HDL-associated miR-223 and ICAM-1 at baseline. Together, these findings show that HDL-associated miRNAs are differentially regulated in healthy participants versus patients with severe obesity and are altered after RYGB. These findings provide insights into how miRNAs are regulated in obesity before and after weight reduction and may lead to the development of novel treatment strategies for obesity and related metabolic disorders.


Asunto(s)
Derivación Gástrica
2.
Arterioscler Thromb Vasc Biol ; 35(11): 2443-50, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26359513

RESUMEN

OBJECTIVE: Lymphatic endothelial dysfunction underlies the pathogenesis of many chronic inflammatory disorders. The proinflammatory cytokine tumor necrosis factor (TNF) is known for its role in disrupting the function of the lymphatic vasculature. This study investigates the ability of apolipoprotein (apo) A-I, the principal apolipoprotein of high-density lipoproteins, to preserve the normal function of lymphatic endothelial cells treated with TNF. APPROACH AND RESULTS: TNF decreased the ability of lymphatic endothelial cells to form tube-like structures. Preincubation of lymphatic endothelial cells with apoA-I attenuated the TNF-mediated inhibition of tube formation in a concentration-dependent manner. In addition, apoA-I reversed the TNF-mediated suppression of lymphatic endothelial cell migration and lymphatic outgrowth in thoracic duct rings. ApoA-I also abrogated the negative effect of TNF on lymphatic neovascularization in an ATP-binding cassette transporter A1-dependent manner. At the molecular level, this involved downregulation of TNF receptor-1 and the conservation of prospero-related homeobox gene-1 expression, a master regulator of lymphangiogenesis. ApoA-I also re-established the normal phenotype of the lymphatic network in the diaphragms of human TNF transgenic mice. CONCLUSIONS: ApoA-I restores the neovascularization capacity of the lymphatic system during TNF-mediated inflammation. This study provides a proof-of-concept that high-density lipoprotein-based therapeutic strategies may attenuate chronic inflammation via its action on lymphatic vasculature.


Asunto(s)
Antiinflamatorios/farmacología , Apolipoproteína A-I/farmacología , Células Endoteliales/efectos de los fármacos , Inflamación/prevención & control , Linfangiogénesis/efectos de los fármacos , Conducto Torácico/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Transportador 1 de Casete de Unión a ATP/metabolismo , Animales , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Células Endoteliales/metabolismo , Células Endoteliales/patología , Proteínas de Homeodominio/metabolismo , Humanos , Inflamación/metabolismo , Inflamación/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Conducto Torácico/metabolismo , Conducto Torácico/patología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Supresoras de Tumor/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 31(5): 1192-200, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21330603

RESUMEN

OBJECTIVE: The goal of this study was to investigate the mechanisms by which apolipoprotein (apo) A-I, in the lipid-free form or as a constituent of discoidal reconstituted high-density lipoproteins ([A-I]rHDL), inhibits high-glucose-induced redox signaling in human monocyte-derived macrophages (HMDM). METHODS AND RESULTS: HMDM were incubated under normal (5.8 mmol/L) or high-glucose (25 mmol/L) conditions with native high-density lipoproteins (HDL) lipid-free apoA-I from normal subjects and from subjects with type 2 diabetes (T2D) or (A-I)rHDL. Superoxide (O2-) production was measured using dihydroethidium fluorescence. NADPH oxidase activity was assessed using lucigenin-derived chemiluminescence and a cyotochrome c assay. p47phox translocation to the plasma membrane, Nox2, superoxide dismutase 1 (SOD1), and SOD2 mRNA and protein levels were determined by real-time polymerase chain reaction and Western blotting. Native HDL induced a time-dependent inhibition of O2- generation in HMDM incubated with 25 mmol/L glucose. Lipid-free apoA-I and (A-I)rHDL increased SOD1 and SOD2 levels and attenuated 25 mmol/L glucose-mediated increases in cellular O2-, NADPH oxidase activity, p47 translocation, and Nox2 expression. Lipid-free apoA-I mediated its effects on Nox2, SOD1, and SOD2 via ABCA1. (A-I)rHDL-mediated effects were via ABCG1 and scavenger receptor BI. Lipid-free apoA-I from subjects with T2D inhibited reactive oxygen species generation less efficiently than normal apoA-I. CONCLUSIONS: Native HDL, lipid-free apoA-I and (A-I)rHDL inhibit high-glucose-induced redox signaling in HMDM. The antioxidant properties of apoA-I are attenuated in T2D.


Asunto(s)
Apolipoproteína A-I/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Lipoproteínas HDL/metabolismo , Lipoproteínas/metabolismo , Macrófagos/metabolismo , Estrés Oxidativo , Transportador 1 de Casete de Unión a ATP , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1 , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Western Blotting , Estudios de Casos y Controles , Células Cultivadas , Diabetes Mellitus Tipo 2/inmunología , Inhibidores Enzimáticos/farmacología , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , NADPH Oxidasa 2 , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Transporte de Proteínas , Interferencia de ARN , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Receptores Depuradores de Clase B/genética , Receptores Depuradores de Clase B/metabolismo , Transducción de Señal , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Superóxidos/metabolismo , Factores de Tiempo , Transfección
4.
J Cereb Blood Flow Metab ; 40(6): 1300-1315, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31296130

RESUMEN

Ischemic stroke is a major cause of mortality and long-term disability with limited treatment options, and a greater understanding of the gene regulatory mechanisms underlying ischemic stroke-associated neuroinflammation is required for new therapies. To study ischemic stroke in vivo, mice were subjected to sustained ischemia by intraluminal filament-induced middle cerebral artery occlusion (MCAo) for 24 h without reperfusion or transient ischemia for 30 min followed by 23.5 h reperfusion, and brain miRNA and mRNA expression changes were quantified by TaqMan OpenArrays and gene (mRNA) expression arrays, respectively. Sustained ischemia resulted in 18 significantly altered miRNAs and 392 altered mRNAs in mouse brains compared to Sham controls; however, the transient ischemic condition was found to impact only 6 miRNAs and 126 mRNAs. miR-367-3p was found to be significantly decreased in brain homogenates with sustained ischemia. G protein-coupled receptor, family C, group 5, member A (Gprc5a), a miR-367-3p target gene, was found to be significantly increased with sustained ischemia. In primary neurons, inhibition of endogenous miR-367-3p resulted in a significant increase in Gprc5a expression. Moreover, miR-367-3p was found to be co-expressed with GPRC5A in human neurons. Results suggest that loss of miR-367-3p suppression of GPRC5A may contribute to neuroinflammation associated with ischemic stroke.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Accidente Cerebrovascular Isquémico/metabolismo , MicroARNs/metabolismo , Receptores Acoplados a Proteínas G/biosíntesis , Animales , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
5.
Sci Rep ; 9(1): 1350, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718702

RESUMEN

Therapeutic interventions that increase plasma high density lipoprotein (HDL) and apolipoprotein (apo) A-I levels have been reported to reduce plasma glucose levels and attenuate insulin resistance. The present study asks if this is a direct effect of increased glucose uptake by skeletal muscle. Incubation of primary human skeletal muscle cells (HSKMCs) with apoA-I increased insulin-dependent and insulin-independent glucose uptake in a time- and concentration-dependent manner. The increased glucose uptake was accompanied by enhanced phosphorylation of the insulin receptor (IR), insulin receptor substrate-1 (IRS-1), the serine/threonine kinase Akt and Akt substrate of 160 kDa (AS160). Cell surface levels of the glucose transporter type 4, GLUT4, were also increased. The apoA-I-mediated increase in glucose uptake by HSKMCs was dependent on phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt, the ATP binding cassette transporter A1 (ABCA1) and scavenger receptor class B type I (SR-B1). Taken together, these results establish that apoA-I increases glucose disposal in skeletal muscle by activating the IR/IRS-1/PI3K/Akt/AS160 signal transduction pathway. The findings suggest that therapeutic agents that increase apoA-I levels may improve glycemic control in people with type 2 diabetes.


Asunto(s)
Apolipoproteína A-I/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Transportador 1 de Casete de Unión a ATP/metabolismo , Membrana Celular/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Humanos , Proteínas Sustrato del Receptor de Insulina/metabolismo , Células Musculares/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Transporte de Proteínas , Receptores Depuradores de Clase B/metabolismo , Transducción de Señal
6.
Atherosclerosis ; 286: 20-29, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31096070

RESUMEN

BACKGROUND AND AIMS: We recently showed that miR-223-3p on high-density lipoproteins (HDL) is exported to endothelial cells, where it inhibits inflammation. However, the origin of miR-223-3p on HDL is unknown. We hypothesize that HDL-associated miR-223-3p originates in myeloid cells and is exported to HDL in a scavenger receptor BI (SR-BI)-dependent manner. METHODS: Polymorphonuclear neutrophils (PMNs) and human monocyte derived macrophages (HMDMs) were incubated with native HDL (nHDL) or discoidal reconstituted HDL (rHDL). Total RNA was isolated before and after incubation. Mature and primary miR-223-3p (pri-mir-223-3p) levels were quantified by real-time PCR. RESULTS: Incubation with nHDL and rHDL increased miR-223-3p export from PMNs and HMDMs. In PMNs, nHDL but not rHDL, increased mature and pri-mir-223-3p. Incubation with HDL also increased Dicer mRNA, a critical regulator of miRNA biogenesis. Incubation of HMDMs with nHDL did not increase cellular levels of mature miR-223-3p, but significantly increased pri-mir-223 levels. Incubation with rHDL had no effect on either mature or pri-mir-223-3p levels. Activated PMNs increased miR-223-3p export to HDL and the production of reactive oxygen species and activated protein kinase C. Blocking HDL binding to SR-BI increased miR-223-3p export to HDL in both PMNs and HMDMs, but did not affect mature and primary miR-223-3p levels. Chemical inhibition of cholesterol flux by Block Lipid Transport (BLT)-1 inhibited HDL-induced pri-mir-223 expression in PMNs. CONCLUSIONS: HDL-associated miR-223-3p originates in PMNs and macrophages. HDL stimulates miR-223-3p biogenesis in PMNs in a process that is regulated by SR-BI-mediated lipid flux.


Asunto(s)
Lipoproteínas HDL/fisiología , MicroARNs/fisiología , Células Mieloides/fisiología , Receptores Depuradores de Clase B/fisiología , Células Cultivadas , Humanos , Metabolismo de los Lípidos/fisiología , Macrófagos , Neutrófilos
7.
Int J Cardiol ; 253: 138-144, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29306454

RESUMEN

AIMS: MicroRNAs (miRNAs) are transported on high-density lipoproteins (HDLs) and HDL-associated miRNAs are involved in intercellular communication. We explored HDL-associated miRNAs concentration gradients across the coronary circulation in stable and unstable coronary artery disease patients and whether changes in the transcoronary gradient were associated with changes in HDL composition and size. METHODS: Acute coronary syndrome (ACS, n=17) patients, those with stable coronary artery disease (stable CAD, n=19) and control subjects without CAD (n=6) were studied. HDLs were isolated from plasma obtained from the coronary sinus (CS), aortic root (arterial blood) and right atrium (venous blood). HDL-associated miRNAs (miR-16, miR-20a, miR-92a, miR-126, miR-222 and miR-223) were quantified by TaqMan miRNA assays. HDL particle sizes were determined by non-denaturing polyacrylamide gradient gel electrophoresis. HDL composition was measured immunoturbidometrically or enzymatically. RESULTS: A concentration gradient across the coronary circulation was observed for all the HDL-associated miRNAs. In ACS patients, there was a significant inverse transcoronary gradient for HDL-associated miR-16, miR-92a and miR-223 (p<0.05) compared to patients with stable CAD. Changes in HDL-miRNA transcoronary gradients were not associated with changes in HDL composition or size. CONCLUSION: HDLs are depleted of miR-16, miR-92a and miR-223 during the transcoronary passage in patients with ACS compared to patients with stable CAD.


Asunto(s)
Síndrome Coronario Agudo/sangre , Enfermedad de la Arteria Coronaria/sangre , Oclusión Coronaria/sangre , Lipoproteínas HDL/sangre , MicroARNs/sangre , Síndrome Coronario Agudo/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Oclusión Coronaria/diagnóstico por imagen , Femenino , Humanos , Masculino
8.
PLoS One ; 11(3): e0151061, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26962854

RESUMEN

BACKGROUND AND AIMS: microRNAs (miRNAs) are small, endogenous non-coding RNAs that regulate metabolic processes, including obesity. The levels of circulating miRNAs are affected by metabolic changes in obesity, as well as in diet-induced weight loss. Circulating miRNAs are transported by high-density lipoproteins (HDL) but the regulation of HDL-associated miRNAs after diet-induced weight loss has not been studied. We aim to determine if HDL-associated miR-16, miR-17, miR-126, miR-222 and miR-223 levels are altered by diet-induced weight loss in overweight and obese males. METHODS: HDL were isolated from 47 subjects following 12 weeks weight loss comparing a high protein diet (HP, 30% of energy) with a normal protein diet (NP, 20% of energy). HDL-associated miRNAs (miR-16, miR-17, miR-126, miR-222 and miR-223) at baseline and after 12 weeks of weight loss were quantified by TaqMan miRNA assays. HDL particle sizes were determined by non-denaturing polyacrylamide gradient gel electrophoresis. Serum concentrations of human HDL constituents were measured immunoturbidometrically or enzymatically. RESULTS: miR-16, miR-17, miR-126, miR-222 and miR-223 were present on HDL from overweight and obese subjects at baseline and after 12 weeks of the HP and NP weight loss diets. The HP diet induced a significant decrease in HDL-associated miR-223 levels (p = 0.015), which positively correlated with changes in body weight (r = 0.488, p = 0.032). Changes in miR-223 levels were not associated to changes in HDL composition or size. CONCLUSION: HDL-associated miR-223 levels are significantly decreased after HP diet-induced weight loss in overweight and obese males. This is the first study reporting changes in HDL-associated miRNA levels with diet-induced weight loss.


Asunto(s)
Lipoproteínas HDL/sangre , MicroARNs/sangre , Obesidad/sangre , Obesidad/dietoterapia , Pérdida de Peso , Adulto , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
9.
Nat Commun ; 5: 3292, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24576947

RESUMEN

High-density lipoproteins (HDL) have many biological functions, including reducing endothelial activation and adhesion molecule expression. We recently reported that HDL transport and deliver functional microRNAs (miRNA). Here we show that HDL suppresses expression of intercellular adhesion molecule 1 (ICAM-1) through the transfer of miR-223 to endothelial cells. After incubation of endothelial cells with HDL, mature miR-223 levels are significantly increased in endothelial cells and decreased on HDL. However, miR-223 is not transcribed in endothelial cells and is not increased in cells treated with HDL from miR-223(-/-) mice. HDL inhibit ICAM-1 protein levels, but not in cells pretreated with miR-223 inhibitors. ICAM-1 is a direct target of HDL-transferred miR-223 and this is the first example of an extracellular miRNA regulating gene expression in cells where it is not transcribed. Collectively, we demonstrate that HDL's anti-inflammatory properties are conferred, in part, through HDL-miR-223 delivery and translational repression of ICAM-1 in endothelial cells.


Asunto(s)
Células Endoteliales/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Lipoproteínas HDL/metabolismo , MicroARNs/metabolismo , Adulto , Animales , Vasos Coronarios/citología , Vasos Coronarios/metabolismo , Femenino , Expresión Génica , Regulación de la Expresión Génica , Voluntarios Sanos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA