Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Allergy ; 78(1): 202-213, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35841381

RESUMEN

BACKGROUND: Anaphylaxis is the most acute and life-threatening manifestation of allergic disorders. Currently, there is a need to improve its medical management and increase the understanding of its molecular mechanisms. This study aimed to quantify the extravasation underlying human anaphylactic reactions and propose new theragnostic approaches. METHODS: Molecular determinations were performed in paired serum samples obtained during the acute phase and at baseline from patients presenting with hypersensitivity reactions. These were classified according to their severity as Grades 1, 2 and 3, the two latter being considered anaphylaxis. Tryptase levels were measured by ImmunoCAP, and serum protein concentration was quantified by Bradford assay. Human serum albumin (HSA) and haemoglobin beta subunit (HBB) levels were determined by Western blot and polyacrylamide gel electrophoresis, respectively. RESULTS: A total of 150 patients were included in the study. Of them, 112 had experienced anaphylaxis (83 and 29 with Grade 2 and 3 reactions, respectively). Tryptase diagnostic efficiency substantially improved when considering patients' baseline values (33%-54%) instead of the acute value threshold (21%). Serum protein concentration and HSA significantly decreased in anaphylaxis (p < .0001). HSA levels dropped with the severity of the reaction (6% and 15% for Grade 2 and 3 reactions, respectively). Furthermore, HBB levels increased during the acute phase of all hypersensitivity reactions (p < .0001). CONCLUSIONS: For the first time, the extravasation underlying human anaphylaxis has been evaluated based on the severity of the reaction using HSA and protein concentration measurements. Additionally, our findings propose new diagnostic and potential therapeutic approaches for this pathological event.


Asunto(s)
Anafilaxia , Humanos , Anafilaxia/diagnóstico , Anafilaxia/etiología , Triptasas , Albúmina Sérica Humana
2.
Pediatr Allergy Immunol ; 32(6): 1296-1306, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33876465

RESUMEN

BACKGROUND: Anaphylaxis is the most severe manifestation of allergic disorders. The poor knowledge of its molecular mechanisms often leads to under-diagnosis. MicroRNAs (miRNA) regulate physiologic and pathologic processes, and they have been postulated as promising diagnostic markers. The main objectives of this study were to characterize the human miRNA profile during anaphylaxis and to assess their capacity as diagnostic markers and determine their participation in the molecular mechanisms of this event. METHODS: The miRNA serum profiles from the acute and baseline phase of 5 oral food-challenged anaphylactic children (<18 years old) were obtained by next-generation sequencing (NGS). From the panel of statistically significant miRNAs obtained, several candidates were selected and analyzed in 19 anaphylactic children by qPCR. We performed system biology analysis (SBA) on their target genes to identify main functions and canonical pathways. A functional in vitro assay was carried out incubating endothelial cells (ECs) in anaphylactic conditions. RESULTS: The NGS identified 389 miRNAs among which 41 were significantly different between acute and baseline samples. The high levels of miR-21-3p (fold change = 2.28, P = .006) and miR-487b-3p (fold change = 1.04, P = .039) observed by NGS in acute serum samples were confirmed in a larger group of 19 patients. The SBA revealed molecular pathways related to the inflammation and immune system regulation. miR-21-3p increased intracellularly and in acute phase serum after EC stimulation. CONCLUSIONS: These findings provide, for the first time, some insights into the anaphylactic miRNA serum profile in children and point to miR-21-3p and miR-487b-3p as candidate biomarkers. Furthermore, the SBA revealed a possible implication of these molecules in the underlying molecular mechanisms. Moreover, ECs increased miR-21-3p intracellularly and released it to the environment in response to anaphylaxis.


Asunto(s)
Anafilaxia , MicroARNs , Adolescente , Biomarcadores , Niño , Células Endoteliales , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
3.
J Allergy Clin Immunol ; 145(2): 583-596.e6, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31679818

RESUMEN

BACKGROUND: Anaphylaxis includes mast cell (MC) activation, but less is known about downstream mechanisms (ie, vascular permeability controlled by endothelial cells [ECs]). The TNF-like weak inducer of apoptosis (TWEAK) and its sole receptor, fibroblast growth factor-inducible molecule 14 (Fn14), belong to the TNF superfamily and are involved in proinflammatory responses. OBJECTIVE: We sought to investigate the role of TWEAK/Fn14 axis in anaphylaxis. METHODS: In vivo vascular permeability and mouse models of passive systemic anaphylaxis (PSA) and active systemic anaphylaxis were applied to wild-type (WT), TWEAK- and Fn14-deficient mice (TWEAK-/- and Fn14-/-, respectively). Primary bone marrow-derived mast cells (BMMCs) and ECs from WT and Fn14-/- or TWEAK-/- mice were studied. The TWEAK/Fn14 axis was also investigated in human samples. RESULTS: Mice with PSA and active systemic anaphylaxis had increased Fn14 and TWEAK expression in lung tissues and increased serum soluble TWEAK concentrations. TWEAK and Fn14 deficiencies prevent PSA-related symptoms, resulting in resistance to decreased body temperature, less severe reactions, and maintained physical activity. Numbers of MCs after PSA are similar between genotypes in different tissue regions, such as ear skin and the trachea, tongue, peritoneum, lungs, and bone marrow. Moreover, in vitro studies revealed no differences in degranulation or mediator release between WT and Fn14-/- BMMCs after IgE-FcεRI stimulation. In vivo and in vitro histamine and platelet-activating factor administration increases Fn14 receptor expression in lungs and ECs. Moreover, Fn14 deficiency in ECs maintained in vitro impermeability when stimulated by mediators or activated BMMCs but not by TWEAK-/- BMMCs, indicating that Fn14 is crucial for endothelial barrier function. TWEAK/Fn14 deletion or TWEAK-blocking antibody prevented histamine/platelet-activating factor-induced vascular subcutaneous permeability. Circulating soluble TWEAK levels were increased in patients with anaphylaxis, and plasma from those patients increased Fn14 expression in ECs. CONCLUSION: The TWEAK/Fn14 axis participates in anaphylactic reactions. Inhibition of TWEAK/Fn14 interaction could be efficacious in anaphylaxis therapy.


Asunto(s)
Anafilaxia/metabolismo , Permeabilidad Capilar/fisiología , Citocina TWEAK/metabolismo , Receptor de TWEAK/metabolismo , Anafilaxia/inmunología , Animales , Citocina TWEAK/inmunología , Células Endoteliales/metabolismo , Histamina/inmunología , Histamina/metabolismo , Ratones , Ratones Noqueados , Factor de Activación Plaquetaria/inmunología , Factor de Activación Plaquetaria/metabolismo , Receptor de TWEAK/inmunología
4.
Biochim Biophys Acta Proteins Proteom ; 1865(8): 1067-1076, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28502749

RESUMEN

A highly prevalent IgE-binding protein band of 28kDa is observed when Salsola kali pollen extract is incubated with individual sera from Amaranthaceae pollen sensitized patients. By an immunoproteomic analysis of S. kali pollen extract, we identified this protein band as an allergenic polygalacturonase enzyme. The allergen, named Sal k 6, exhibits a pI of 7.14 and a molecular mass of 39,554.2Da. It presents similarities to Platanaceae, Poaceae, and Cupressaceae allergenic polygalacturonases. cDNA-encoding sequence was subcloned into the pET41b vector and produced in bacteria as a His-tag fusion recombinant protein. The far-UV CD spectrum determined that rSal k 6 was folded. Immunostaining of the S. kali pollen protein extract with a rSal k 6-specific pAb and LC-MS/MS proteomic analyses confirmed the co-existence of the 28kDa band together with an allergenic band of about 47kDa in the pollen extract. Therefore, the 28kDa was assigned as a natural degradation product of the 47kDa integral polygalacturonase. The IgE-binding inhibition to S. kali pollen extract using rSal k 6 as inhibitor showed that signals directed to both protein bands of 28 and 47kDa were completely abrogated. The average prevalence of rSal k 6 among the three populations analyzed was 30%, with values correlating well with the levels of grains/m3 of Amaranthaceae pollen. Sal k 6 shares IgE epitopes with Oleaceae members (Fraxinus excelsior, Olea europaea and Syringa vulgaris), with IgE-inhibition values ranging from 20% to 60%, respectively. No IgE-inhibition was observed with plant-derived food extracts.


Asunto(s)
Antígenos de Plantas/metabolismo , Glicósidos/metabolismo , Inmunoglobulina E/metabolismo , Proteínas de Plantas/metabolismo , Polen/metabolismo , Salsola/metabolismo , Amaranthaceae/química , Amaranthaceae/metabolismo , Secuencia de Aminoácidos , Antígenos de Plantas/química , Secuencia de Bases , Clonación Molecular/métodos , Reacciones Cruzadas/fisiología , Glicósidos/química , Oleaceae/química , Oleaceae/metabolismo , Proteínas de Plantas/química , Polen/química , Unión Proteica/fisiología , Proteómica/métodos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Salsola/química , Alineación de Secuencia
7.
Pediatr Allergy Immunol ; 27(7): 716-720, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27341427

RESUMEN

BACKGROUND: Ingestion of food allergens present in maternal milk during breastfeeding has been hypothesized as a gateway to sensitization to food; however, this process could develop during pregnancy, as the maternal-fetal interface develops a Th2- and Treg-mediated environment to protect the fetus. We hypothesized that in these surroundings, unborn children are exposed to food allergens contained in the mother's diet, possibly giving rise to first sensitization. METHODS: The presence of allergens in utero was studied by analyzing amniotic fluid (AF) samples in two different stages of pregnancy: at 15-20 weeks and after delivery at term. An antibody microarray was developed to test for the most common food allergens. The array detects the presence of ten allergens from milk, fruit, egg, fish, nuts, and wheat. RESULTS: AF from 20 pregnant women was collected: eight after delivery at term and 12 from women who underwent diagnostic amniocentesis between weeks 15 and 20 of gestation. The presence of allergens was detected in all samples. Samples from amniocentesis had a higher allergen concentration than samples after delivery at term. CONCLUSIONS: We demonstrated the presence of intact major food allergens in AF samples. This early contact could explain subsequent sensitization to foods never eaten before.


Asunto(s)
Alérgenos/metabolismo , Líquido Amniótico/metabolismo , Hipersensibilidad a los Alimentos/inmunología , Proteínas de la Leche/metabolismo , Efectos Tardíos de la Exposición Prenatal/inmunología , Alérgenos/inmunología , Líquido Amniótico/inmunología , Animales , Bovinos , Dieta , Femenino , Alimentos , Humanos , Inmunidad Materno-Adquirida , Inmunización , Proteínas de la Leche/inmunología , Embarazo , Análisis por Matrices de Proteínas
8.
Int Arch Allergy Immunol ; 167(2): 83-93, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26202069

RESUMEN

BACKGROUND: The incidence of Amaranthaceae pollen allergy has increased due to the desertification occurring in many countries. In some regions of Spain, Salsola kali is the main cause of pollinosis, at almost the same level as olive and grass pollen. Sal k 1 - the sensitization marker of S. kali pollinosis - is used in clinical diagnosis, but is purified at a low yield from pollen. We aimed to produce a recombinant (r)Sal k 1 able to span the structural and immunological properties of the natural isoforms from pollen, and validate its potential use for diagnosis. METHODS: Specific cDNA was amplified by PCR, cloned into the pET41b vector and used to transform BL21 (DE3) Escherichia coli cells. Immunoblotting, ELISA, basophil activation and skin-prick tests were used to validate the recombinant protein against Sal k 1 isolated from pollen. Sera and blood cells from S. kali pollen-sensitized patients and specific monoclonal and polyclonal antisera were used. RESULTS: rSal k 1 was produced in bacteria with a yield of 7.5 mg/l of cell culture. The protein was purified to homogeneity and structural and immunologically validated against the natural form. rSal k 1 exhibited a higher IgE cross-reactivity with plant-derived food extracts such as peanut, almond or tomato than with pollen sources such as Platanus acerifolia and Oleaceae members. CONCLUSIONS: rSal k 1 expressed in bacteria retains intact structural and immunological properties in comparison to the pollen-derived allergen. It spans the immunological properties of most of the isoforms found in pollen, and it might substitute natural Sal k 1 in clinical diagnosis.


Asunto(s)
Alérgenos , Antígenos de Plantas , Polen/inmunología , Rinitis Alérgica Estacional/diagnóstico , Rinitis Alérgica Estacional/inmunología , Salsola/inmunología , Alérgenos/genética , Alérgenos/aislamiento & purificación , Antígenos de Plantas/genética , Antígenos de Plantas/aislamiento & purificación , Prueba de Desgranulación de los Basófilos , Clonación Molecular , Reacciones Cruzadas , Escherichia coli/genética , Humanos , Inmunoglobulina E/metabolismo , Polen/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/inmunología , Isoformas de Proteínas/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , Salsola/genética , España
10.
Front Allergy ; 5: 1307880, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38384772

RESUMEN

Introduction: Anaphylaxis is the most severe manifestation of allergic disorders. Currently, an increasing number of cells, pathways and molecules involved in the etiopathogenesis of anaphylaxis are being discovered. However, there are no conclusive biomarkers to confirm its diagnosis. Small non-coding RNAs (sncRNAs) are 18-200 nucleotide molecules that can be divided into: microRNAs (miRNAs), Piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), small nuclear RNAs (snRNAs), transference RNA derived fragments (tRFs) and YRNA derived fragments (YRFs). These molecules participate in cell-cell communication modulating various physiological processes and have been postulated as non-invasive biomarkers of several pathologies. Therefore, in this study we characterized the serum circulating profile of other sncRNA beyond miRNAs in two populations of 5 adults and 5 children with drug- and food-mediated anaphylaxis, respectively. Methods: Samples were obtained from each patient under two different conditions: during anaphylaxis and 14 days after the reaction (control). The sncRNA analysis was carried out by Next Generation Sequencing (NGS). Results: A total of 671 sncRNAs (3 piRNAs, 74 snoRNAs, 54 snRNAs, 348 tRFs and 192 YRFs) were identified in adults with drug-induced anaphylaxis, while 612 sncRNAs (2 piRNAs, 73 snoRNAs, 52 snRNAs, 321 tRFs and 164 YRFs) were characterized in children with food-mediated anaphylaxis. However, only 33 (1 piRNA, 4 snoRNAs, 1 snRNAs, 7 tRFs and 20 YRFs) and 80 (4 snoRNAs, 6 snRNAs, 54 tRFs and 16 YRFs) of them were statistically different between both conditions, respectively. Among them, only three (Y_RNA.394, Y_RNA.781 and SCARNA2) were common to both adults and children analysis. Discussion: This study provides a differential profile of circulating serum sncRNAs beyond miRNAs in patients with anaphylaxis, postulating them as candidate biomarkers for this pathological event and as novel mediators of the reaction.

11.
Nutrients ; 16(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38612981

RESUMEN

The consumption of macadamia nuts has increased due to their cardioprotective and antioxidant properties. However, this rise is consistent with an increase in the cases of macadamia nut allergy, leading to severe reactions. Although two Macadamia integrifolia allergens (Mac i 1 and Mac i 2) have been identified in Australian and Japanese patients, the allergenic sensitization patterns in Western European populations, particularly in Spain, remain unclear. For this purpose, seven patients with macadamia nut allergy were recruited in Spain. Macadamia nut protein extracts were prepared and, together with hazelnut and walnut extracts, were used in Western blot and inhibition assays. IgE-reactive proteins were identified using MALDI-TOF/TOF mass spectrometry (MS). Immunoblotting assays revealed various IgE-binding proteins in macadamia nut extracts. Mass spectrometry identified three new allergens: an oleosin, a pectin acetylesterase, and an aspartyl protease. Cross-reactivity studies showed that hazelnut extract but not walnut extract inhibited macadamia nut oleosin-specific IgE binding. This suggests that oleosin could be used as marker for macadamia-hazelnut cross-reactivity. The results show an allergenic profile in the Spanish cohort different from that previously detected in Australian and Japanese populations. The distinct sensitization profiles observed highlight the potential influence of dietary habits and environmental factors exposure on allergenicity.


Asunto(s)
Corylus , Juglans , Hipersensibilidad a la Nuez , Humanos , Alérgenos , Nueces , Macadamia , Australia , Inmunoglobulina E
13.
Front Immunol ; 14: 1209874, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965316

RESUMEN

Introduction: Anaphylaxis is among the most severe manifestations of allergic disorders, but its molecular basis remains largely unknown and reliable diagnostic markers are not currently available. MicroRNAs (miRNAs) regulate several pathophysiological processes and have been proposed as non-invasive biomarkers. Therefore, this study aims to evaluate their involvement in anaphylactic reaction and their value as biomarkers. Methods: Acute (anaphylaxis) and baseline (control) serum samples from 67 patients with anaphylaxis were studied. Among them, 35 were adults with drug-induced anaphylaxis, 13 adults with food-induced anaphylaxis and 19 children with food-induced anaphylaxis. The circulating serum miRNAs profile was characterized by next-generation sequencing (NGS). For this purpose, acute and baseline samples from 5 adults with drug-induced anaphylaxis were used. RNA was extracted, retrotranscribed, sequenced and the readings obtained were mapped to the human database miRBase_20. In addition, a system biology analysis (SBA) was performed with its target genes and revealed pathways related to anaphylactic mediators signaling. Moreover, functional and molecular endothelial permeability assays were conducted with miR-375-3p-transfected cells in response to cAMP. Results: A total of 334 miRNAs were identified, of which 21 were significant differentially expressed between both phases. Extracellular vesicles (EVs) were characterized by Western blot, electron microscopy and NanoSight. A decrease of miR-375-3p levels was determined by qPCR in both serum and EVs of patients with anaphylaxis (****p<.0001). Precisely, the decrease of miR-375-3p correlated with the increase of two inflammatory cytokines: monocyte chemoattractant protein-1 (MCP-1) and granulocyte macrophage colony-stimulating factor (GM-CSF). On the other hand, functional and molecular data obtained showed that miR-375-3p partially blocked the endothelial barrier maintenance and stabilization by disassembly of cell-cell junctions exhibiting low Rac1-Cdc42 levels. Discussion: These findings demonstrate a differential serum profile of circulating miRNAs in patients with anaphylaxis and exhibit the miR-375-3p modulation in serum and EVs during drug- and food-mediated anaphylactic reactions. Furthermore, the in silico and in vitro studies show a negative role for miR-375-3p/Rac1-Cdc42 in the endothelial barrier stability.


Asunto(s)
Anafilaxia , MicroARN Circulante , Vesículas Extracelulares , MicroARNs , Adulto , Niño , Humanos , Anafilaxia/genética , Anafilaxia/metabolismo , MicroARNs/metabolismo , Vesículas Extracelulares/metabolismo , MicroARN Circulante/metabolismo , Biomarcadores/metabolismo
14.
Int Arch Allergy Immunol ; 157(1): 31-40, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-21894026

RESUMEN

BACKGROUND: IgE epitope mapping of allergens reveals important information about antigen elicitors involved in allergic reactions. The peptide-based microarray immunoassay offers an advantage of scale and parallel design over previous methods of epitope mapping. It has been used to map epitopes of some food allergens but has never been used with fish allergens. OBJECTIVE: We sought to develop a peptide microarray immunoassay to map allergenic fish epitopes of two isoforms of Atlantic salmon (Salmo salar) parvalbumin, Sal s 1 beta 1 and Sal s 1 beta 2. METHODS: Sera from 16 fish-allergic patients with specific IgE to salmon parvalbumin were used. Twelve healthy volunteers were used as negative controls. A library of overlapping peptides was synthesized commercially, representing the primary sequence of Sal s 1 beta 1 and Sal s 1 beta 2. Peptides were used to analyze allergen-specific IgE antibodies by immunolabeling with patient sera. RESULTS: Three antigenic regions, not previously described, were identified in Sal s 1 beta 1. Two of them correlated with those previously reported in Gad c 1, parvalbumin from Baltic cod (Gadus callarias). No allergenic regions were found in Sal s 1 beta 2. This could be explained by crucial amino acid substitutions between isoforms. CONCLUSIONS: We have identified three antigenic regions in Sal s 1 beta 1 using a peptide microarray immunoassay. These three sequential epitopes formed a unique antigenic determinant in the three-dimensional model of the protein. In addition, we proved that isoforms from the same protein might have a different allergenic behavior.


Asunto(s)
Alérgenos/inmunología , Mapeo Epitopo/métodos , Inmunoensayo , Análisis por Micromatrices , Péptidos/inmunología , Salmo salar/inmunología , Adolescente , Adulto , Secuencia de Aminoácidos , Animales , Niño , Epítopos/química , Epítopos/inmunología , Femenino , Humanos , Inmunoglobulina E/sangre , Inmunoglobulina E/inmunología , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/química , Conformación Proteica , Adulto Joven
15.
J Allergy Clin Immunol ; 127(3): 603-7, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21093026

RESUMEN

BACKGROUND: Peanut allergy affects persons from various geographic regions where populations are exposed to different dietary habits and environmental pollens. OBJECTIVE: We sought to describe the clinical and immunologic characteristics of patients with peanut allergy from 3 countries (Spain, the United States, and Sweden) using a molecular component diagnostic approach. METHODS: Patients with peanut allergy from Madrid (Spain, n = 50), New York (United States, n = 30), Gothenburg, and Stockholm (both Sweden, n = 35) were enrolled. Clinical data were obtained either from a specific questionnaire or gathered from chart reviews. IgE antibodies to peanut extract and the peanut allergens rAra h 1, 2, 3, 8 and 9, as well as to cross-reactive birch (rBet v 1) and grass (rPhl p 1, 5, 7, and 12) pollen allergens, were analyzed. RESULTS: American patients frequently had IgE antibodies to rAra h 1 to 3 (56.7% to 90.0%) and often presented with severe symptoms. Spanish patients recognized these 3 recombinant peanut allergens less frequently (16.0% to 42.0%), were more often sensitized to the lipid transfer protein rAra h 9 (60.0%), and typically had peanut allergy after becoming allergic to other plant-derived foods. Swedish patients detected rAra h 1 to 3 more frequently than Spanish patients (37.1% to 74.3%) and had the highest sensitization rate to the Bet v 1 homologue rAra h 8 (65.7%), as well as to rBet v 1 (82.9%). Spanish and Swedish patients became allergic to peanut at 2 years or later, whereas the American children became allergic around 1 year of age. CONCLUSIONS: Peanut allergy has different clinical and immunologic patterns in different areas of the world. Allergen component diagnostics might help us to better understand this complex entity.


Asunto(s)
Hipersensibilidad al Cacahuete/epidemiología , Hipersensibilidad al Cacahuete/inmunología , Adolescente , Edad de Inicio , Niño , Preescolar , Femenino , Humanos , Masculino , Hipersensibilidad al Cacahuete/diagnóstico , España/epidemiología , Encuestas y Cuestionarios , Suecia/epidemiología , Estados Unidos/epidemiología
16.
World Allergy Organ J ; 15(6): 100640, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35694005

RESUMEN

Drug hypersensitivity reactions (DHRs) to intravenous drugs can be severe and might leave patients and doctors in a difficult position where an essential treatment or intervention has to be suspended. Even if virtually any intravenous medication can potentially trigger a life-threatening DHR, chemotherapeutics, biologics, and antibiotics are amongst the intravenous drugs most frequently involved in these reactions. Admittedly, suspending such treatments may negatively impact the survival outcomes or the quality of life of affected patients. Delabeling pathways and rapid drug desensitization (RDD) can help reactive patients stay on first-choice therapies instead of turning to less efficacious, less cost-effective, or more toxic alternatives. However, these are high-complexity and high-risk techniques, which usually need expert teams and allergy-specific techniques (skin testing, in vitro testing, drug provocation testing) to ensure safety, an accurate diagnosis, and personalized management. Unfortunately, there are significant inequalities within and among countries in access to allergy departments with the necessary expertise and resources to offer these techniques and tackle these DHRs optimally. The main objective of this consensus document is to create a great benefit for patients worldwide by aiding allergists to expand the scope of their practice and support them with evidence, data, and experience from leading groups from around the globe. This statement of the Drug Hypersensitivity Committee of the World Allergy Organization (WAO) aims to be a comprehensive practical guide on the technical aspects of implementing acute-onset intravenous hypersensitivity delabeling and RDD for a wide range of drugs. Thus, the manuscript does not only focus on clinical pathways. Instead, it also provides guidance on topics usually left unaddressed, namely, internal validation, continuous quality improvement, creating a healthy multidisciplinary environment, and redesigning care (including a specific supplemental section on a real-life example of how to design a dedicated space that can combine basic and complex diagnostic and therapeutic techniques in allergy).

17.
Int Arch Allergy Immunol ; 156(3): 291-6, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21720174

RESUMEN

BACKGROUND: Cross-reactivity among plant food allergens belonging to the nonspecific lipid transfer protein (LTP) family is well known. In contrast, the relationship among these allergens and their putative homologs from olive (Ole e 7) and Parietaria (Par j 1) pollen has not been clarified. METHODS: Sera with specific IgE to LTP allergens were obtained from peach-, mustard- and olive pollen-allergic patients. Purified LTP allergens from foods (peach, apple, mustard and wheat) and pollens (olive, mugwort and Parietaria) were tested by ELISA and ELISA-inhibition assays. RESULTS: Plant food LTP-allergic patients showed a significantly higher number of sera (89-100 vs. 33-64%) with specific IgE and mean specific IgE levels (0.30-1.56 vs. 0.21-0.34 OD units) to the 4 food LTP allergens tested than to olive Ole e 7 and Parietaria Par j 1 pollen. ELISA-inhibition assays indicated cross-inhibition between food LTP allergens but no cross-reactivity between these allergens and Ole e 7 and Par j 1, or, even more, between the LTP allergens from olive and Parietaria pollen. CONCLUSIONS: LTP allergens from olive and Parietaria pollen cross-react neither with allergenic LTPs from plant foods nor between themselves. Therefore, both pollens do not seem to be related with the LTP syndrome.


Asunto(s)
Alérgenos/inmunología , Antígenos de Plantas/inmunología , Proteínas Portadoras/inmunología , Reacciones Cruzadas , Parietaria/inmunología , Proteínas de Plantas/inmunología , Polen/inmunología , Secuencia de Aminoácidos , Hipersensibilidad a los Alimentos , Humanos , Inmunoglobulina E/sangre , Inmunoglobulina E/inmunología , Olea/inmunología , Alineación de Secuencia
18.
Ann Allergy Asthma Immunol ; 106(5): 429-35, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21530876

RESUMEN

BACKGROUND: Profilins are commonly involved in polysensitization of allergic patients; therefore, appropriate markers should be used in component-resolved diagnosis. OBJECTIVE: To evaluate the immunological equivalence between profilins from pollens and plant-derived foods, to be used in component-resolved diagnosis. METHODS: Specific immunoglobulin (Ig) G antibodies against pollen and fruit profilins, as well as sera from patients allergic to mustard, melon, or olive pollen, were used. Purified profilins from mustard seeds, fruit melon, and chenopod and birch pollen were assayed in immunoblotting, enzyme-linked immunosorbent assay (ELISA), and ELISA inhibition assays. RESULTS: Significant correlation was found in the response of purified profilins by ELISA and immunoblotting for both specific IgG and IgE. The highest levels of IgE binding were obtained for olive pollen-allergic patients, which could be related to the route of sensitization. The responses of individual patients to profilins were also similar and independent of the sensitizing source. The inhibition between pairs of allergens was generally higher than 70%, indicating that profilins share most of the IgE epitopes. Modeling of mimotopes in the conformational structure of the implicated profilins supports their strong cross-reactivity obtained experimentally. CONCLUSIONS: No correlation exists between the level of IgE response of individual patients to specific profilins and the corresponding theoretical sensitizing source, suggesting that the sensitization could be attributable to any profilin present in the environment of the patients. This would bear out the use of most profilins as a common marker for polysensitization in component-resolved diagnosis and for therapeutic approaches.


Asunto(s)
Alérgenos/inmunología , Reacciones Antígeno-Anticuerpo/inmunología , Inmunoglobulina E/inmunología , Plantas Comestibles/inmunología , Polen/inmunología , Profilinas/inmunología , Alérgenos/química , Alérgenos/genética , Secuencia de Aminoácidos , Animales , Antígenos de Plantas/química , Antígenos de Plantas/genética , Antígenos de Plantas/inmunología , Unión Competitiva/inmunología , Chenopodium/química , Chenopodium/inmunología , Reacciones Cruzadas/inmunología , Ensayo de Inmunoadsorción Enzimática , Epítopos de Linfocito B/química , Epítopos de Linfocito B/inmunología , Humanos , Hipersensibilidad/diagnóstico , Hipersensibilidad/inmunología , Sueros Inmunes/inmunología , Immunoblotting , Inmunoglobulina G/inmunología , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Datos de Secuencia Molecular , Planta de la Mostaza/química , Planta de la Mostaza/inmunología , Plantas Comestibles/química , Polen/química , Profilinas/química , Profilinas/genética , Conejos , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Homología de Secuencia de Aminoácido
19.
J Allergy Clin Immunol ; 126(3): 596-601.e1, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20816193

RESUMEN

BACKGROUND: Lentils are often responsible for allergic reactions to legumes in Mediterranean children. Although the primary sequence of the major allergen Len c 1 is known, the location of the IgE-binding epitopes remains undefined. OBJECTIVE: We sought to identify IgE-binding epitopes of Len c 1 and relate epitope binding to clinical characteristics. METHODS: One hundred thirty-five peptides corresponding to the primary sequence of Len c 1 were probed with sera from 33 patients with lentil allergy and 15 nonatopic control subjects by means of microarray immunoassay. Lentil-specific IgE levels, skin prick test responses, and clinical reactions to lentil were determined. Epitopes were defined as overlapping signal above interslide and intraslide cutoffs and confirmed by using inhibition assays with a peptide from the respective region. Hierarchic clustering of microarray data was used to correlate binding patterns with clinical findings. RESULTS: The patients with lentil allergy specifically recognized IgE-binding epitopes located in the C-terminal region between peptides 107 and 135. Inhibition experiments confirmed the specificity of IgE binding in this region, identifying different epitopes. Linkage of cluster results with clinical data and lentil-specific IgE levels displayed a positive correlation between lentil-specific IgE levels, epitope recognition, and respiratory symptoms. Modeling based on the 3-dimensional structure of a homologous soy vicilin suggests that the Len c 1 epitopes identified are exposed on the surface of the molecule. CONCLUSION: Several IgE-binding sequential epitopes of Len c 1 have been identified. Epitopes are located in the C-terminal region and are predicted to be exposed on the surface of the protein. Epitope diversity is positively correlated with IgE levels, pointing to a more polyclonal IgE response.


Asunto(s)
Alérgenos/inmunología , Epítopos , Inmunoglobulina E/sangre , Lens (Planta)/inmunología , Proteínas de Almacenamiento de Semillas/inmunología , Adolescente , Alérgenos/genética , Niño , Preescolar , Epítopos/química , Femenino , Humanos , Hipersensibilidad Inmediata/genética , Hipersensibilidad Inmediata/inmunología , Inmunoglobulina E/genética , Inmunoglobulina E/inmunología , Lens (Planta)/genética , Masculino , Análisis por Micromatrices , Modelos Moleculares , Proteínas de Almacenamiento de Semillas/genética
20.
Foods ; 10(6)2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072292

RESUMEN

2S albumins are relevant and often major allergens from several tree nuts and seeds, affecting mainly children and young people. The present study aims to assess how the structural features of 2S albumins could affect their immunogenic capacity, which is essential to comprehend the role of these proteins in food allergy. For this purpose, twelve 2S albumins were isolated from their respective extracts by chromatographic methods and identified by MALDI-TOF mass-spectrometry. Their molecular and structural characterization was conducted by electrophoretic, spectroscopic and in silico methods, showing that these are small proteins that comprise a wide range of isoelectric points, displaying a general high structure stability to thermal treatment. Despite low amino acid sequence identity, these proteins share structural features, pointing conformational epitopes to explain cross-reactivity between them. Immunoblotting with allergic patients' sera revealed those possible correlations between evolutionarily distant 2S albumins from different sources. The availability of a well-characterized panel of 2S albumins from plant-derived sources allowed establishing correlations between their structural features and their allergenic potential, including their role in cross-reactivity processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA