Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
PLoS Genet ; 9(10): e1003804, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24098140

RESUMEN

The evolution of metazoans from their choanoflagellate-like unicellular ancestor coincided with the acquisition of novel biological functions to support a multicellular lifestyle, and eventually, the unique cellular and physiological demands of differentiated cell types such as those forming the nervous, muscle and immune systems. In an effort to understand the molecular underpinnings of such metazoan innovations, we carried out a comparative genomics analysis for genes found exclusively in, and widely conserved across, metazoans. Using this approach, we identified a set of 526 core metazoan-specific genes (the 'metazoanome'), approximately 10% of which are largely uncharacterized, 16% of which are associated with known human disease, and 66% of which are conserved in Trichoplax adhaerens, a basal metazoan lacking neurons and other specialized cell types. Global analyses of previously-characterized core metazoan genes suggest a prevalent property, namely that they act as partially redundant modifiers of ancient eukaryotic pathways. Our data also highlights the importance of exaptation of pre-existing genetic tools during metazoan evolution. Expression studies in C. elegans revealed that many metazoan-specific genes, including tubulin folding cofactor E-like (TBCEL/coel-1), are expressed in neurons. We used C. elegans COEL-1 as a representative to experimentally validate the metazoan-specific character of our dataset. We show that coel-1 disruption results in developmental hypersensitivity to the microtubule drug paclitaxel/taxol, and that overexpression of coel-1 has broad effects during embryonic development and perturbs specialized microtubules in the touch receptor neurons (TRNs). In addition, coel-1 influences the migration, neurite outgrowth and mechanosensory function of the TRNs, and functionally interacts with components of the tubulin acetylation/deacetylation pathway. Together, our findings unveil a conserved molecular toolbox fundamental to metazoan biology that contains a number of neuronally expressed and disease-related genes, and reveal a key role for TBCEL/coel-1 in regulating microtubule function during metazoan development and neuronal differentiation.


Asunto(s)
Evolución Molecular , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/genética , Neuronas/metabolismo , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Regulación del Desarrollo de la Expresión Génica , Homeostasis , Humanos , Redes y Vías Metabólicas/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Filogenia , Placozoa/genética
2.
J Cell Sci ; 125(Pt 22): 5417-27, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22956537

RESUMEN

Doublecortin-domain containing (DCDC) genes play key roles in the normal and pathological development of the human brain cortex. The origin of the cellular specialisation and the functional redundancy of these microtubule (MT)-associated proteins (MAPs), especially those of Doublecortin (DCX) and Doublecortin-like kinase (DCLKs) genes, is still unclear. The DCX domain has the ability to control MT architecture and bundling. However, the physiological significance of such properties is not fully understood. To address these issues, we sought post-mitotic roles for zyg-8, the sole representative of the DCX-DCLK subfamily of genes in C. elegans. Previously, zyg-8 has been shown to control anaphase-spindle positioning in one-cell stage embryos, but functions of the gene later in development have not been investigated. Here we show that wild-type zyg-8 is required beyond early embryonic divisions for proper development, spontaneous locomotion and touch sensitivity of adult worms. Consistently, we find zyg-8 expression in the six touch receptor neurons (TRNs), as well as in a subset of other neuronal and non-neuronal cells. In TRNs and motoneurons, zyg-8 controls cell body shape/polarity and process outgrowth and morphology. Ultrastructural analysis of mutant animals reveals that zyg-8 promotes structural integrity, length and number of individual MTs, as well as their bundled organisation in TRNs, with no impact on MT architecture.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/citología , Genes de Helminto/genética , Proteínas Asociadas a Microtúbulos/genética , Centro Organizador de los Microtúbulos/metabolismo , Neuronas/citología , Neuronas/metabolismo , Neuropéptidos/genética , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Caenorhabditis elegans/ultraestructura , Proteínas de Caenorhabditis elegans/metabolismo , Proliferación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Colchicina/farmacología , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Embrión no Mamífero/ultraestructura , Humanos , Locomoción/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/metabolismo , Centro Organizador de los Microtúbulos/efectos de los fármacos , Centro Organizador de los Microtúbulos/ultraestructura , Mutación/genética , Neuronas/ultraestructura , Neuropéptidos/metabolismo , Polimerizacion/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Receptores de Superficie Celular/metabolismo , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestructura , Tacto
3.
Proc Natl Acad Sci U S A ; 107(50): 21517-22, 2010 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-21068373

RESUMEN

Long-lived microtubules found in ciliary axonemes, neuronal processes, and migrating cells are marked by α-tubulin acetylation on lysine 40, a modification that takes place inside the microtubule lumen. The physiological importance of microtubule acetylation remains elusive. Here, we identify a BBSome-associated protein that we name αTAT1, with a highly specific α-tubulin K40 acetyltransferase activity and a catalytic preference for microtubules over free tubulin. In mammalian cells, the catalytic activity of αTAT1 is necessary and sufficient for α-tubulin K40 acetylation. Remarkably, αTAT1 is universally and exclusively conserved in ciliated organisms, and is required for the acetylation of axonemal microtubules and for the normal kinetics of primary cilium assembly. In Caenorhabditis elegans, microtubule acetylation is most prominent in touch receptor neurons (TRNs) and MEC-17, a homolog of αTAT1, and its paralog αTAT-2 are required for α-tubulin acetylation and for two distinct types of touch sensation. Furthermore, in animals lacking MEC-17, αTAT-2, and the sole C. elegans K40α-tubulin MEC-12, touch sensation can be restored by expression of an acetyl-mimic MEC-12[K40Q]. We conclude that αTAT1 is the major and possibly the sole α-tubulin K40 acetyltransferase in mammals and nematodes, and that tubulin acetylation plays a conserved role in several microtubule-based processes.


Asunto(s)
Acetiltransferasas/metabolismo , Cilios/fisiología , Mecanotransducción Celular/fisiología , Tacto/fisiología , Tubulina (Proteína)/metabolismo , Acetiltransferasas/genética , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/fisiología , Especificidad por Sustrato , Tubulina (Proteína)/genética
4.
J Neurosci ; 27(51): 14089-98, 2007 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-18094248

RESUMEN

Hearing, touch and proprioception are thought to involve direct activation of mechano-electrical transduction (MeT) channels. In Caenorhabditis elegans touch receptor neurons (TRNs), such channels contain two pore-forming subunits (MEC-4 and MEC-10) and two auxiliary subunits (MEC-2 and MEC-6). MEC-4 and MEC-10 belong to a large superfamily of ion channel proteins (DEG/ENaCs) that form nonvoltage-gated, amiloride-sensitive Na+ channels. In TRNs, unique 15-protofilament microtubules and an electron-dense extracellular matrix have been proposed to serve as gating tethers critical for MeT channel activation. We combined high-pressure freezing and serial-section immunoelectron microscopy to determine the position of MeT channels relative to putative gating tethers. MeT channels were visualized using antibodies against MEC-4 and MEC-2. This nanometer-resolution view of a sensory MeT channel establishes structural constraints on the mechanics of channel gating. We show here that MEC-2 and MEC-5 collagen, a putative extracellular tether, occupy overlapping but distinct domains in TRN neurites. Although channels decorate all sides of TRN neurites; they are not associated with the distal endpoints of 15-protofilament microtubules hypothesized to be gating tethers. These specialized microtubules, which are unique to TRNs, assemble into a cross-linked bundle connected by a network of kinked filaments to the neurite membrane. We speculate that the microtubule bundle converts external point loads into membrane stretch which, in turn, facilitates MeT channel activation.


Asunto(s)
Proteínas de Caenorhabditis elegans/ultraestructura , Canales Epiteliales de Sodio/ultraestructura , Mecanorreceptores/ultraestructura , Mecanotransducción Celular/fisiología , Proteínas de la Membrana/ultraestructura , Nanotecnología/métodos , Neuronas/fisiología , Canales de Sodio/ultraestructura , Tacto , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/análisis , Proteínas de Caenorhabditis elegans/metabolismo , Canales Epiteliales de Sodio/análisis , Canales Epiteliales de Sodio/metabolismo , Mecanorreceptores/química , Mecanorreceptores/metabolismo , Proteínas de la Membrana/análisis , Proteínas de la Membrana/metabolismo , Neuronas/química , Neuronas/ultraestructura , Células Receptoras Sensoriales/química , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/ultraestructura , Canales de Sodio/análisis , Canales de Sodio/metabolismo , Tacto/fisiología
5.
BMC Dev Biol ; 8: 110, 2008 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-19014691

RESUMEN

BACKGROUND: The founding member of the EMAP-like protein family is the Echinoderm Microtubule-Associated Protein (EMAP), so-named for its abundance in sea urchin, starfish, and sand dollar eggs. The EMAP-like protein family has five members in mammals (EML1 through EML5) and only one in both Drosophila (ELP-1) and C. elegans (ELP-1). Biochemical studies of sea urchin EMAP and vertebrate EMLs implicate these proteins in the regulation of microtubule stability. So far, however, the physiological function of this protein family remains unknown. RESULTS: We examined the expression pattern of C. elegans ELP-1 by means of transgenic gene expression in living embryos and adults, and by immunolocalization with an ELP-1-specific antibody in fixed tissues. In embryos, ELP-1 is expressed in the hypodermis. In larvae and adults, ELP-1 is expressed in the body wall, spermatheca and vulval muscles, intestine, and hypodermal seam cells. In muscle, ELP-1 is associated with adhesion complexes near the cell surface and is bound to a criss-crossing network of microtubules in the cytoplasm. ELP-1 is also expressed in a subset of mechanoreceptor neurons, including the ray neurons in the male tail, microtubule-rich touch receptor neurons, and the six ciliated IL1 neurons. This restricted localization in the nervous system implies that ELP-1 plays a role in mechanotransmission. Consistent with this idea, decreasing ELP-1 expression decreases sensitivity to gentle touch applied to the body wall. CONCLUSION: These data imply that ELP-1 may play an important role during the transmission of forces and signals between the body surface and both muscle cells and touch receptor neurons.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Secuencia de Aminoácidos , Animales , Western Blotting , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/fisiología , Datos de Secuencia Molecular , Neuronas/metabolismo , Unión Proteica
6.
Elife ; 62017 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-28098556

RESUMEN

Our bodies are in constant motion and so are the neurons that invade each tissue. Motion-induced neuron deformation and damage are associated with several neurodegenerative conditions. Here, we investigated the question of how the neuronal cytoskeleton protects axons and dendrites from mechanical stress, exploiting mutations in UNC-70 ß-spectrin, PTL-1 tau/MAP2-like and MEC-7 ß-tubulin proteins in Caenorhabditis elegans. We found that mechanical stress induces supercoils and plectonemes in the sensory axons of spectrin and tau double mutants. Biophysical measurements, super-resolution, and electron microscopy, as well as numerical simulations of neurons as discrete, elastic rods provide evidence that a balance of torque, tension, and elasticity stabilizes neurons against mechanical deformation. We conclude that the spectrin and microtubule cytoskeletons work in combination to protect axons and dendrites from mechanical stress and propose that defects in ß-spectrin and tau may sensitize neurons to damage.


Asunto(s)
Axones/fisiología , Caenorhabditis elegans/fisiología , Proteínas Asociadas a Microtúbulos/deficiencia , Movimiento , Espectrina/deficiencia , Torque , Tubulina (Proteína)/deficiencia , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans , Estrés Mecánico
7.
J Comp Neurol ; 445(3): 227-37, 2002 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-11920703

RESUMEN

The vesicular gamma-aminobutyric acid (GABA) transporter (VGAT), which transports the inhibitory amino acid transmitters GABA and glycine, is localized to synaptic vesicles in axon terminals. The localization of VGAT immunoreactivity to mouse and rat retina was evaluated with light and electron microscopy by using well-characterized VGAT antibodies. Specific VGAT immunoreactivity was localized to numerous varicose processes in all laminae of the inner plexiform layer (IPL) and to the outer plexiform layer (OPL). Amacrine cell somata characterized by weak VGAT immunoreactivity in the cytoplasm were located in the ganglion cell layer and proximal inner nuclear layer (INL) adjacent to the IPL. In rat retina, VGAT-immunoreactive cell bodies also contained GABA, glycine, or parvalbumin (PV) immunoreactivity, suggesting vesicular uptake of GABA or glycine by these cells. A few varicose VGAT-immunoreactive processes entered the OPL from the IPL. VGAT immunoreactivity in the OPL was predominantly localized to horizontal cell processes. VGAT and calcium binding protein-28K immunoreactivities (CaBP; a marker for horizontal cells) were colocalized in processes and terminals distributed to the OPL. Furthermore, VGAT immunoreactivity overlapped or was immediately adjacent to postsynaptic density-95 (PSD-95) immunoreactivity, which is prominent in photoreceptor terminals. Preembedding immunoelectron microscopy of mouse and rat retinae showed that VGAT immunoreactivity was localized to horizontal cell processes and their terminals. Immunoreactivity was distributed throughout the cytoplasm of the horizontal cell processes. Taken together, these findings demonstrate VGAT immunoreactivity in both amacrine and horizontal cell processes, suggesting these cells contain vesicles that accumulate GABA and glycine, possibly for vesicular release.


Asunto(s)
Células Amacrinas/ultraestructura , Proteínas Portadoras/análisis , Proteínas de la Membrana/análisis , Proteínas de Transporte de Membrana , Transportadores de Anión Orgánico , Retina/ultraestructura , Células Amacrinas/química , Animales , Proteínas Transportadoras de GABA en la Membrana Plasmática , Glicina , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Microscopía Inmunoelectrónica , Ratas , Ratas Sprague-Dawley , Retina/química , Ácido gamma-Aminobutírico
8.
Elife ; 3: e01498, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24569477

RESUMEN

In neuronal processes, microtubules (MTs) provide structural support and serve as tracks for molecular motors. While it is known that neuronal MTs are more stable than MTs in non-neuronal cells, the molecular mechanisms underlying this stability are not fully understood. In this study, we used live fluorescence microscopy to show that the C. elegans CAMSAP protein PTRN-1 localizes to puncta along neuronal processes, stabilizes MT foci, and promotes MT polymerization in neurites. Electron microscopy revealed that ptrn-1 null mutants have fewer MTs and abnormal MT organization in the PLM neuron. Animals grown with a MT depolymerizing drug caused synthetic defects in neurite branching in the absence of ptrn-1 function, indicating that PTRN-1 promotes MT stability. Further, ptrn-1 null mutants exhibited aberrant neurite morphology and synaptic vesicle localization that is partially dependent on dlk-1. Our results suggest that PTRN-1 represents an important mechanism for promoting MT stability in neurons. DOI: http://dx.doi.org/10.7554/eLife.01498.001.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neuronas/metabolismo , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Genotipo , Quinasas Quinasa Quinasa PAM/metabolismo , Microscopía Electrónica , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/efectos de los fármacos , Mutación , Neuritas/metabolismo , Neuronas/efectos de los fármacos , Fenotipo , Transducción de Señal , Vesículas Sinápticas/metabolismo , Moduladores de Tubulina/farmacología
9.
Curr Biol ; 22(12): 1066-74, 2012 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-22658592

RESUMEN

BACKGROUND: Microtubules are built from linear polymers of α-ß tubulin dimers (protofilaments) that form a tubular quinary structure. Microtubules assembled from purified tubulin in vitro contain between 10 and 16 protofilaments; however, such structural polymorphisms are not found in cells. This discrepancy implies that factors other than tubulin constrain microtubule protofilament number, but the nature of these constraints is unknown. RESULTS: Here, we show that acetylation of MEC-12 α-tubulin constrains protofilament number in C. elegans touch receptor neurons (TRNs). Whereas the sensory dendrite of wild-type TRNs is packed with a cross-linked bundle of long, 15-protofilament microtubules, mec-17;atat-2 mutants lacking α-tubulin acetyltransferase activity have short microtubules, rampant lattice defects, and variable protofilament number both between and within microtubules. All-atom molecular dynamics simulations suggest a model in which acetylation of lysine 40 promotes the formation of interprotofilament salt bridges, stabilizing lateral interactions between protofilaments and constraining quinary structure to produce stable, structurally uniform microtubules in vivo. CONCLUSIONS: Acetylation of α-tubulin is an essential constraint on protofilament number in vivo. We propose a structural model in which this posttranslational modification promotes the formation of lateral salt bridges that fine-tune the association between adjacent protofilaments and enable the formation of uniform microtubule populations in vivo.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Mecanorreceptores/fisiología , Microtúbulos/fisiología , Modelos Moleculares , Procesamiento Proteico-Postraduccional/fisiología , Tubulina (Proteína)/metabolismo , Acetilación , Animales , Caenorhabditis elegans/metabolismo , Mecanorreceptores/ultraestructura , Microscopía Electrónica , Microtúbulos/ultraestructura , Simulación de Dinámica Molecular , Procesamiento Proteico-Postraduccional/genética
10.
Neuron ; 71(5): 845-57, 2011 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-21903078

RESUMEN

Many nociceptors detect mechanical cues, but the ion channels responsible for mechanotransduction in these sensory neurons remain obscure. Using in vivo recordings and genetic dissection, we identified the DEG/ENaC protein, DEG-1, as the major mechanotransduction channel in ASH, a polymodal nociceptor in Caenorhabditis elegans. But DEG-1 is not the only mechanotransduction channel in ASH: loss of deg-1 revealed a minor current whose properties differ from those expected of DEG/ENaC channels. This current was independent of two TRPV channels expressed in ASH. Although loss of these TRPV channels inhibits behavioral responses to noxious stimuli, we found that both mechanoreceptor currents and potentials were essentially wild-type in TRPV mutants. We propose that ASH nociceptors rely on two genetically distinct mechanotransduction channels and that TRPV channels contribute to encoding and transmitting information. Because mammalian and insect nociceptors also coexpress DEG/ENaCs and TRPVs, the cellular functions elaborated here for these ion channels may be conserved.


Asunto(s)
Fenómenos Biofísicos/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Mecanotransducción Celular/fisiología , Potenciales de la Membrana/genética , Proteínas de la Membrana/fisiología , Nociceptores/metabolismo , Canales Catiónicos TRPC/metabolismo , Amilorida/farmacología , Animales , Animales Modificados Genéticamente , Conducta Animal/fisiología , Fenómenos Biofísicos/efectos de los fármacos , Fenómenos Biofísicos/genética , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Estimulación Eléctrica/métodos , Mecanotransducción Celular/genética , Potenciales de la Membrana/efectos de los fármacos , Proteínas de la Membrana/genética , Mutación Missense/genética , Técnicas de Placa-Clamp/métodos , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/genética , Sodio/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Tacto/fisiología
11.
Neuron ; 66(5): 710-23, 2010 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-20547129

RESUMEN

Presynaptic assembly requires the packaging of requisite proteins into vesicular cargoes in the cell soma, their long-distance microtubule-dependent transport down the axon, and, finally, their reconstitution into functional complexes at prespecified sites. Despite the identification of several molecules that contribute to these events, the regulatory mechanisms defining such discrete states remain elusive. We report the characterization of an Arf-like small G protein, ARL-8, required during this process. arl-8 mutants prematurely accumulate presynaptic cargoes within the proximal axon of several neuronal classes, with a corresponding failure to assemble presynapses distally. This proximal accumulation requires the activity of several molecules known to catalyze presynaptic assembly. Dynamic imaging studies reveal that arl-8 mutant vesicles exhibit an increased tendency to form immotile aggregates during transport. Together, these results suggest that arl-8 promotes a trafficking identity for presynaptic cargoes, facilitating their efficient transport by repressing premature self-association.


Asunto(s)
Factores de Ribosilacion-ADP/fisiología , Transporte Axonal/fisiología , Proteínas de la Membrana/fisiología , Terminales Presinápticos/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas Transportadoras Vesiculares de Neurotransmisores/antagonistas & inhibidores , Factores de Ribosilacion-ADP/genética , Animales , Transporte Axonal/genética , Caenorhabditis elegans , Proteínas de la Membrana/genética , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Terminales Presinápticos/ultraestructura , Transporte de Proteínas/genética , Vesículas Sinápticas/genética , Vesículas Sinápticas/ultraestructura , Proteínas Transportadoras Vesiculares de Neurotransmisores/genética , Proteínas Transportadoras Vesiculares de Neurotransmisores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA